Stability Enhancement of PV Powered Microgrid using Levenberg-Marquardt Algorithm Based Intelligent Controller Under Grid-connected Mode

Author(s):  
Anantha Krishnan Venkatesan ◽  
Senthil Kumar Natarajan

An effective and robust controller is designed using Levenberg-Marquardt (LM) algorithm-based Artificial Neural Network (ANN) for the solar Photo-Voltaic (PV) based distributed generation units for stabilizing the grid-connected microgrid (MG) under load changes and irradiance variations. A test system comprising of two PV units and one diesel generator unit connected to the utility grid is modelled and considered for the controller design in MATLAB/Simulink environment. PV generated power is injected into the grid through voltage source converter (VSC) regulated by using the proposed ANN controller. Based on the grid voltage and available PV generation, the ANN controller regulates the inverter current by setting the reference voltage vector to synthesize gating pulses for the inverter. The robustness of the controller design is analysed and validated through time-domain simulations by subjecting it to extreme operating conditions. The controller performance is evaluated by Integral Square Error (ISE) and Integral Time Absolute Error (ITAE) for the test system. The results are compared with conventional PI and PID controllers to prove the superior performing ANN controller.

Author(s):  
Shou-Heng Huang ◽  
Ron M. Nelson

Abstract A feedforward, three-layer, partially-connected artificial neural network (ANN) is proposed to be used as a rule selector for a rule-based fuzzy logic controller. This will allow the controller to adapt to various control modes and operating conditions for different plants. A principal advantage of an ANN over a look up table is that the ANN can make good estimates to fill in for missing data. The control modes, operating conditions, and control rule sets are encoded into binary numbers as the inputs and outputs for the ANN. The General Delta Rule is used in the backpropagation learning process to update the ANN weights. The proposed ANN has a simple topological structure and results in a simple analysis and relatively easy implementation. The average square error and the maximal absolute error are used to judge if the correct connections between neurons are set up. Computer simulations are used to demonstrate the effectiveness of this ANN as a rule selector.


Author(s):  
Anjana Jain ◽  
R. Saravanakumar ◽  
S. Shankar ◽  
V. Vanitha

Abstract The variable-speed Permanent Magnet Synchronous Generator (PMSG) based Wind Energy Conversion System (WECS) attracts the maximum power from wind, but voltage-regulation and frequency-control of the system in standalone operation is a challenging task A modern-control-based-tracking of power from wind for its best utilization is proposed in this paper for standalone PMSG based hybrid-WECS comprising Battery Energy Storage System (BESS). An Adaptive Synchronous Reference Frame Phase-Locked-Loop (SRF-PLL) based control scheme for load side bi-directional voltage source converter (VSC) is presented for the system. MATLAB/Simulink model is developed for simulation study for the proposed system and the effectiveness of the controller for bi-directional-converter is discussed under different operating conditions: like variable wind-velocity, sudden load variation, and load unbalancing. Converter control scheme enhances the power smoothening, supply-load power-matching. Also it is able to regulate the active & reactive power from PMSG-BESS hybrid system with control of fluctuations in voltage & frequency with respect to varying operating conditions. Proposed controller successfully offers reactive-power-compensation, harmonics-reduction, and power-balancing. The proposed scheme is based on proportional & integral (PI) controller. Also system is experimentally validated in the laboratory-environment and results are presented here.


Author(s):  
Hamed Pourgharibshahi ◽  
Majid Taheri Andani ◽  
Zahra Ramezani ◽  
Kamran Yousefpour ◽  
Tahere Pourseif ◽  
...  

2016 ◽  
Vol 26 (02) ◽  
pp. 1750034 ◽  
Author(s):  
J. Sangeetha ◽  
P. Renuga

This paper proposes the design of auxiliary-coordinated controller for static VAR compensator (SVC) and thyristor-controlled series capacitor (TCSC) devices by adaptive fuzzy optimized technique for oscillation damping in multimachine power systems. The performance of the coordinated control of SVC and TCSC devices based on feedforward adaptive neuro fuzzy inference system (F-ANFIS) is compared with that of the adaptive neuro fuzzy inference system (ANFIS) structure based on recurrent adaptive neuro fuzzy inference system (R-ANFIS) network architecture. The objective of the coordinated controller design is to tune the parameters of SVC and TCSC fuzzy lead lag compensator simultaneously to minimize the deviation of rotor angle and rotor speed of the generators. The performance of the system is enhanced by optimally tuning the membership functions of fuzzy lead lag controller parameter of the flexible AC transmission system (FACTS) by R-ANFIS controller. The training data for F-ANFIS and R-ANFIS are generated by conventional linear control technique under various operating conditions. The offline trained controller tunes the parameter of lead lag controller in online. The oscillation damping ability of the system is analyzed for three-machine test system by calculating the standard deviation and cost function. The superior performance of R-ANFIS controller is compared with various particle swarm optimization-based feedforward ANFIS controllers available in literature.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3316 ◽  
Author(s):  
Dong Wang ◽  
Xiaojie Zhang ◽  
Lei Yang ◽  
Yunhui Huang ◽  
Wei Huang ◽  
...  

Recent studies show that the loss of stability for a voltage-source converter (VSC) in weak-grid connection is largely related to its synchronization unit, i.e., the phase-locked loop (PLL). This paper studies the synchronization stability of a system comprised by two VSCs in parallel connection to a weak grid. A reduced transfer function based small-signal model, which can allow for the interactions between PLL and converter outer power controls, is first proposed. Then, an improved net damping criterion is used to analyze the damping and stability characters of such system under various operating conditions and different controller configurations. Compared to the conventional net damping criterion, the used criterion has wider applicability in terms of stability judgment. Case studies show that the studied system tends to be unstable at weak-grid or heavy-loading conditions. The instability can be in the form of oscillations or monotonic divergence, in which, the latter is more likely to occur for the converters without grid voltage regulation capabilities. Besides, the net damping-based sensitivity studies can provide guidance on control tuning or design for stability enhancement. Detailed model-based time domain simulations are conducted to verify the analysis results.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Lei Chen ◽  
Hongkun Chen ◽  
Jun Yang ◽  
Huiwen He

Considering the rapid development of high temperature superconducting (HTS) materials, superconducting power applications have attracted more and more attention in the power industry, particularly for electrical systems including renewable energy. This paper conducts experimental tests on a voltage compensation type active superconducting fault current limiter (SFCL) prototype and explores the SFCL’s application in a permanent-magnet synchronous generator- (PMSG-) based wind turbine system. The SFCL prototype is composed of a three-phase air-core superconducting transformer and a voltage source converter (VSC) integrated with supercapacitor energy storage. According to the commissioning test and the current-limiting test, the SFCL prototype can automatically suppress the fault current and offer a highly controlled compensation voltage in series with the 132 V electrical test system. To expand the application of the active SFCL in a 10 kW class PMSG-based wind turbine system, digital simulations under different fault cases are performed in MATLAB/Simulink. From the demonstrated simulation results, using the active SFCL can help to maintain the power balance, mitigate the voltage-current fluctuation, and improve the wind energy efficiency. The active SFCL can be regarded as a feasible solution to assist the PMSG-based wind turbine system to achieve low-voltage ride-through (LVRT) operation.


Author(s):  
Mario A. Rios ◽  
Maria F. Perez

<p>Planning of high voltage direct current (HVDC) grids requires inclusion of reliability assessment of alternatives under study. This paper proposes a methodology to evaluate the adequacy of voltage source converter/VSC-HVDC networks. The methodology analyses the performance of the system using N-1 and N-2 contingencies in order to detect weaknesses in the DC network and evaluates two types of remedial actions to keep the entire system under the acceptable operating limits. The remedial actions are applied when a violation of these limits on the DC system occurs; those include topology changes in the network and adjustments of power settings of VSC converter stations. The CIGRE B4 DC grid test system is used for evaluating the reliability/adequacy performance by means of the proposed methodology in this paper. The proposed remedial actions are effective for all contingencies; then, numerical results are as expected. This work is useful for planning and operation of grids based on VSC-HVDC technology.</p>


Sign in / Sign up

Export Citation Format

Share Document