Predicting porosity, water saturation, and shale volume with high-resolution seismic inversion using Hopfield network: Upper Assam Basin, India

AAPG Bulletin ◽  
2022 ◽  
Vol 106 (1) ◽  
pp. 103-118
Author(s):  
Son D.T. Phan ◽  
Triveni Gogoi ◽  
Rima Chatterjee ◽  
Mrinal K. Sen
2018 ◽  
Vol 3 (1) ◽  
pp. 7-14
Author(s):  
Abdul Haris ◽  
Ressy Sandrina ◽  
Agus Riyanto

Integrated Amplitude Versus Offset ( AVO), elastic seismic inversion and petrophysical analysis have been successfully applied to estimate the elastic parameters of the reservoir for a case study of the gas field in south Sumatera basin. This paper aims to have better understanding the petrophysical properties of the reservoir. The petrophysical analysis was carried out by performing routine formation evaluation that includes calculation of shale volume, porosity, and water saturation of basic well log data. Sensitivity analysis was conducted to evaluate the sensitivity parameters of the log for changing in lithology, porosity, and fluid content in the reservoir. For completing the availability of elastic parameter from well log data, shear wave logs were derived from Castagna’s mudrock line relationship. Further, P-impedance, S-impedance, VpVs ratio, LambdaRho (λρ), MuRho (μρ) and density(ρ) were then calculated through a Lambda-Mu-Rho (LMR) transformation. Prior to performing AVO analysis and elastic seismic inversion, super gather technique was applied to improve the reliability of pre-stack seismic data. Elastic seismic inversion was carried out to extract the lateral elastic properties to capture lithology and fluid changes in the reservoir. In addition, AVO analysis of pre-stacked data was applied to identify hydrocarbon-bearing sandstone at target zone. The petrophysical analysis shows that porosity versus density crossplot is able to distinguish sand-shale based on 34% shale volume cutoff, while LMR crossplot is able to delineate hydrocarbon zone at water saturation value under 65%. The predicted lateral elastic parameter shows slightly higher value compare to overlying layer.


2021 ◽  
Author(s):  
Nicolas Carrizo ◽  
◽  
Emiliano Santiago ◽  
Pablo Saldungaray ◽  
◽  
...  

The Río Neuquén field is located thirteen miles north west of Neuquén city, between Neuquén and Río Negro provinces, Argentina. Historically it has been a conventional oil producer, but some years ago it was converted to a tight gas producer targeting deeper reservoirs. The targeted geological formations are Lajas, which is already a known tight gas producer in the Neuquén basin, and the less known overlaying Punta Rosada formation, which is the main objective of the current work. Punta Rosada presents a diverse lithology, including shaly intervals separating multiple stacked reservoirs that grade from fine-grained sandstones to conglomerates. The reservoir pressure can change from the normal hydrostatic gradient to up to 50% of overpressure, there is little evidence of movable water. The key well in this study has a comprehensive set of open hole logs, including NMR and pulsed-neutron spectroscopy data, and it is supported by a full core study over a 597ft section in Punta Rosada. Additionally, data from several offset wells were used, containing sidewall cores and complete sets of electrical logs. This allowed to develop rock-calibrated mineral models, adjusting the clay volume with X-ray diffraction data, porosity and permeability with confined core measurements, and link the logs interpretation to dominant pore throat radius models from MICP Purcell tests at 60,000 psi. Several water saturation models were tested attempting to adjust the irreducible water saturation with NMR and Purcell tests at reservoir conditions. As a result, three hydraulic units were defined and characterized, identifying a strong correlation with lithofacies observed in cores and image logs. A cluster analysis model allowed the propagation of the facies to the rest of the wells (50). Finally, lithofacies were distributed in a full-field 3D model, guided by an elastic seismic inversion. In the main key well, in addition to the open hole logs and core data, a cased hole pulsed neutron log (PNL) was also acquired , which was used to develop algorithms to generate synthetic pseudo open hole logs such as bulk density and resistivity, integrated with the spectroscopy mineralogical information and other PNL data to perform the petrophysical evaluation. This enables the option to evaluate wells in contingency situations where open hole logs are not possible or are too risky, and also in planned situations to replace the open hole data in infill wells, saving considerable drilling rig time to reduce costs during this field development phase. Additionally, the calibrated cased hole model can be used in old wells already drilled and cased in the Punta Rosada formation. This paper explores the integration of different core and log measurements and explains the development of rock-calibrated petrophysical and rock types models for open and cased hole logs addressing the characterization challenges found in tight gas sand reservoirs. The results of this study will be crucial to optimize the development of a new producing horizon in a mature field.


2017 ◽  
Vol 5 (1) ◽  
pp. 37 ◽  
Author(s):  
Inyang Namdie ◽  
Idara Akpabio ◽  
Agbasi Okechukwu .E.

Bonga oil field is located 120km (75mi) southeast of the Niger Delta, Nigeria. It is a subsea type development located about 3500ft water depth and has produced over 330 mmstb of hydrocarbon till date with over 16 oil producing and water injection wells. The producing formation is the Middle to Late Miocene unconsolidated turbidite sandstones with lateral and vertical homogeneities in reservoir properties. This work, analysis the petrophysical properties of the reservoir units for the purpose of modeling the effect of shale content on permeability in the reservoir. Turbidite sandstones are identified by gamma-ray log signatures as intervals with 26-50 API, while sonic, neutron, resistivity, caliper and other log data are applied to estimate volume of shale ranging between 0.972 v/v for shale intervals and 0.0549 v/v for turbidite sands, water saturation of 0.34 v/v average in most sand intervals, porosity range from 0.010 for shale intervals to 0.49 v/v for clean sands and permeability values for the send interval 11.46 to2634mD, for intervals between 7100 to 9100 ft., Data were analyzed using the Interactive Petrophysical software that splits the whole curve into sand and shale zones and estimates among other petrophysical parameters the shale contents of the prospective zones. While Seismic data revealed reservoir thickness ranging from 25ft to over 140ft well log data within the five wells have identified sands of similar thickness and estimated average permeability of700mD. Within the sand units across the five wells, cross plots of estimated porosity, volume of shale and permeability values reveal strong dependence of permeability on shale volume and a general decrease in permeability in intervals with shale volume. It is concluded that sand units with high shale contents that are from0.500 to0.900v/v will not provide good quality reservoir in the field.


2019 ◽  
Vol 10 (2) ◽  
pp. 351-362 ◽  
Author(s):  
Mohamed A. Kassab ◽  
Ali El-Said Abbas ◽  
Mostafa A. Teama ◽  
Musa A. S. Khalifa

Abstract Petrophysical assessment of Facha Formation based on log data of six wells A1, A3, A4, A5, A8 and A13 recorded over the entire reservoir interval was established. Hakim Oil Field produces from the Lower Eocene Facha reservoir, which is located at the western side of Sirte basin. Limestone, dolostone and dolomitic limestone are the main lithologies of the Facha reservoir. This lithology is defined by neutron porosity—density cross-plot. Noteworthily, limestone increases in the lowermost intervals of the reservoir. Structurally, the field is traversed by three northwest–southeast faults. The shale of the Upper Cretaceous Sirte Formation is thought to be the source rock of the Facha Formation, whereas the seals are the limestone and anhydrite of the Lower Eocene Gir Formation. In this study, the Facha reservoir’s cutoff values were obtained from the cross-plots of the calculated shale volume, porosity and water saturation values accompanied with gamma ray log data and were set as 20%, 10% and 70%, respectively. Isoparametric maps for the thickness variation of net pay, average porosity, shale volume and water saturation were prepared, and the authors found out that the Facha Formation has promising reservoir characteristics in the area of study; a prospective region for oil accumulation trends is in the north and south of the study area.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. R185-R195 ◽  
Author(s):  
Daniel O. Pérez ◽  
Danilo R. Velis ◽  
Mauricio D. Sacchi

A new inversion method to estimate high-resolution amplitude-versus-angle attributes (AVA) attributes such as intercept and gradient from prestack data is presented. The proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet, fit the observed data. The inversion is carried out using a hybrid two-step strategy that combines fast iterative shrinkage-thresholding algorithm (FISTA) and a standard least-squares (LS) inversion. FISTA, which can be viewed as an extension of the classical gradient algorithm, provides sparse solutions by minimizing the misfit between the modeled and the observed data, and the [Formula: see text]-norm of the solution. FISTA is used to estimate the location in time of the main reflectors. Then, LS is used to retrieve the appropriate reflectivity amplitudes that honor the data. FISTA, like other iterative solvers for [Formula: see text]-norm regularization, does not require matrices in explicit form, making it easy to apply, economic in computational terms, and adequate for solving large-scale problems. As a consequence, the FISTA+LS strategy represents a simple and cost-effective new procedure to solve the AVA inversion problem. Results on synthetic and field data show that the proposed hybrid method can obtain high-resolution AVA attributes from noisy observations, making it an interesting alternative to conventional methods.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 203 ◽  
Author(s):  
Kamil Cichostępski ◽  
Jerzy Dec ◽  
Anna Kwietniak

In this article, we present a high-resolution shallow seismic surveying method for imaging the inner structure of the Miocene evaporitic formation, where sulfur ore occurs. The survey was completed in the northern part of the Carpathian Foredeep (SE Poland) where sulfur deposits occur up to a depth of ca. 260 m. In this region, the sulfur ore is strata-bound and exists within a carbonate interval of a thickness of approximately 28 m. The average sulfur content reaches up to 30%. Five seismic profiles were acquired with a total length of 2450 m. The acquisition was designed to obtain high-resolution, long offsets and a satisfactory signal-to-noise ratio. In the field, we used 48 channels and variable end-on roll-along spread that allowed us to record offsets of up to 375 m. Data processing was aimed at preserving relative amplitudes (known as RAP, relative amplitude preservation processing), an approach that is necessary for seismic inversion application. With the utilization of well log data and results of simultaneous inversion, we were able to calculate the elastic properties of the deposit to evaluate sulfur ore content and changes in lithology. The sulfur content is strongly dependent on the carbonate reservoir’s porosity. To evaluate porosity changes and associated sulfur content, a simultaneous inversion procedure was used. This is a pioneering approach in which we applied pre-stack inversion methods to shallow carbonate sediments.


Sign in / Sign up

Export Citation Format

Share Document