scholarly journals Designs of metareflectors based on nanodisk and annular hole arrays with polarization independence, switching, and broad bandwidth characteristics

2021 ◽  
Author(s):  
Xiaocan Xu ◽  
Yu-Sheng Lin ◽  
Rongpeng Fang ◽  
boru yang
Keyword(s):  
2016 ◽  
Vol 8 (29) ◽  
pp. 19158-19167 ◽  
Author(s):  
Zhimin Liang ◽  
Pingyang Zeng ◽  
Pengyi Liu ◽  
Chuanxi Zhao ◽  
Weiguang Xie ◽  
...  

2021 ◽  
Vol 127 (4) ◽  
Author(s):  
S. Skruszewicz ◽  
S. Fuchs ◽  
J. J. Abel ◽  
J. Nathanael ◽  
J. Reinhard ◽  
...  

AbstractWe present an overview of recent results on optical coherence tomography with the use of extreme ultraviolet and soft X-ray radiation (XCT). XCT is a cross-sectional imaging method that has emerged as a derivative of optical coherence tomography (OCT). In contrast to OCT, which typically uses near-infrared light, XCT utilizes broad bandwidth extreme ultraviolet (XUV) and soft X-ray (SXR) radiation (Fuchs et al in Sci Rep 6:20658, 2016). As in OCT, XCT’s axial resolution only scales with the coherence length of the light source. Thus, an axial resolution down to the nanometer range can be achieved. This is an improvement of up to three orders of magnitude in comparison to OCT. XCT measures the reflected spectrum in a common-path interferometric setup to retrieve the axial structure of nanometer-sized samples. The technique has been demonstrated with broad bandwidth XUV/SXR radiation from synchrotron facilities and recently with compact laboratory-based laser-driven sources. Axial resolutions down to 2.2 nm have been achieved experimentally. XCT has potential applications in three-dimensional imaging of silicon-based semiconductors, lithography masks, and layered structures like XUV mirrors and solar cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xueling Cheng ◽  
Yunshan Wang

AbstractOptoelectronic devices in the UV range have many applications including deep-UV communications, UV photodetectors, UV spectroscopy, etc. Graphene has unique exciton resonances, that have demonstrated large photosensitivity across the UV spectrum. Enhancing UV absorption in graphene has the potential to boost the performance of the various opto-electronic devices. Here we report numerical study of UV absorption in graphene on aluminum and magnesium hole-arrays. The absorption in a single-layer graphene on aluminum and magnesium hole-arrays reached a maximum value of 28% and 30% respectively, and the absorption peak is tunable from the UV to the visible range. The proposed graphene hybrid structure does not require graphene to be sandwiched between different material layers and thus is easy to fabricate and allows graphene to interact with its surroundings.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3165-3196 ◽  
Author(s):  
Joonkyo Jung ◽  
Hyeonjin Park ◽  
Junhyung Park ◽  
Taeyong Chang ◽  
Jonghwa Shin

AbstractMetamaterials can possess extraordinary properties not readily available in nature. While most of the early metamaterials had narrow frequency bandwidth of operation, many recent works have focused on how to implement exotic properties and functions over broad bandwidth for practical applications. Here, we provide two definitions of broadband operation in terms of effective material properties and device functionality, suitable for describing materials and devices, respectively, and overview existing broadband metamaterial designs in such two categories. Broadband metamaterials with nearly constant effective material properties are discussed in the materials part, and broadband absorbers, lens, and hologram devices based on metamaterials and metasurfaces are discussed in the devices part.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Zhendong Yan ◽  
Chaojun Tang ◽  
Guohua Wu ◽  
Yumei Tang ◽  
Ping Gu ◽  
...  

Achieving perfect electromagnetic wave absorption with a sub-nanometer bandwidth is challenging, which, however, is desired for high-performance refractive-index sensing. In this work, we theoretically study metasurfaces for sensing applications based on an ultra-narrow band perfect absorption in the infrared region, whose full width at half maximum (FWHM) is only 1.74 nm. The studied metasurfaces are composed of a periodic array of cross-shaped holes in a silver substrate. The ultra-narrow band perfect absorption is related to a hybrid mode, whose physical mechanism is revealed by using a coupling model of two oscillators. The hybrid mode results from the strong coupling between the magnetic resonances in individual cross-shaped holes and the surface plasmon polaritons on the top surface of the silver substrate. Two conventional parameters, sensitivity (S) and figure of merit (FOM), are used to estimate the sensing performance, which are 1317 nm/RIU and 756, respectively. Such high-performance parameters suggest great potential for the application of label-free biosensing.


2019 ◽  
Vol 21 (9) ◽  
pp. 095601 ◽  
Author(s):  
Qiyuan Zhang ◽  
Haoyu Wang ◽  
Peng Wu ◽  
Yuegang Fu ◽  
Xueyuan Li ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document