scholarly journals Synaptotagmin-7–mediated activation of spontaneous NMDAR currents is disrupted in bipolar disorder susceptibility variants

PLoS Biology ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. e3001323
Author(s):  
Qiu-Wen Wang ◽  
Ying-Han Wang ◽  
Bing Wang ◽  
Yun Chen ◽  
Si-Yao Lu ◽  
...  

Synaptotagmin-7 (Syt7) plays direct or redundant Ca2+ sensor roles in multiple forms of vesicle exocytosis in synapses. Here, we show that Syt7 is a redundant Ca2+ sensor with Syt1/Doc2 to drive spontaneous glutamate release, which functions uniquely to activate the postsynaptic GluN2B-containing NMDARs that significantly contribute to mental illness. In mouse hippocampal neurons lacking Syt1/Doc2, Syt7 inactivation largely diminishes spontaneous release. Using 2 approaches, including measuring Ca2+ dose response and substituting extracellular Ca2+ with Sr2+, we detect that Syt7 directly triggers spontaneous release via its Ca2+ binding motif to activate GluN2B-NMDARs. Furthermore, modifying the localization of Syt7 in the active zone still allows Syt7 to drive spontaneous release, but the GluN2B-NMDAR activity is abolished. Finally, Syt7 SNPs identified in bipolar disorder patients destroy the function of Syt7 in spontaneous release in patient iPSC-derived and mouse hippocampal neurons. Therefore, Syt7 could contribute to neuropsychiatric disorders through driving spontaneous glutamate release.

2008 ◽  
Vol 181 (5) ◽  
pp. 831-846 ◽  
Author(s):  
Sergio Leal-Ortiz ◽  
Clarissa L. Waites ◽  
Ryan Terry-Lorenzo ◽  
Pedro Zamorano ◽  
Eckart D. Gundelfinger ◽  
...  

Active zones are specialized regions of the presynaptic plasma membrane designed for the efficient and repetitive release of neurotransmitter via synaptic vesicle (SV) exocytosis. Piccolo is a high molecular weight component of the active zone that is hypothesized to participate both in active zone formation and the scaffolding of key molecules involved in SV recycling. In this study, we use interference RNAs to eliminate Piccolo expression from cultured hippocampal neurons to assess its involvement in synapse formation and function. Our data show that Piccolo is not required for glutamatergic synapse formation but does influence presynaptic function by negatively regulating SV exocytosis. Mechanistically, this regulation appears to be calmodulin kinase II–dependent and mediated through the modulation of Synapsin1a dynamics. This function is not shared by the highly homologous protein Bassoon, which indicates that Piccolo has a unique role in coupling the mobilization of SVs in the reserve pool to events within the active zone.


2018 ◽  
Vol 115 (9) ◽  
pp. 2234-2239 ◽  
Author(s):  
Man Yan Wong ◽  
Changliang Liu ◽  
Shan Shan H. Wang ◽  
Aram C. F. Roquas ◽  
Stephen C. Fowler ◽  
...  

The presynaptic active zone provides sites for vesicle docking and release at central nervous synapses and is essential for speed and accuracy of synaptic transmission. Liprin-α binds to several active zone proteins, and loss-of-function studies in invertebrates established important roles for Liprin-α in neurodevelopment and active zone assembly. However, Liprin-α localization and functions in vertebrates have remained unclear. We used stimulated emission depletion superresolution microscopy to systematically determine the localization of Liprin-α2 and Liprin-α3, the two predominant Liprin-α proteins in the vertebrate brain, relative to other active-zone proteins. Both proteins were widely distributed in hippocampal nerve terminals, and Liprin-α3, but not Liprin-α2, had a prominent component that colocalized with the active-zone proteins Bassoon, RIM, Munc13, RIM-BP, and ELKS. To assess Liprin-α3 functions, we generated Liprin-α3–KO mice by using CRISPR/Cas9 gene editing. We found reduced synaptic vesicle tethering and docking in hippocampal neurons of Liprin-α3–KO mice, and synaptic vesicle exocytosis was impaired. Liprin-α3 KO also led to mild alterations in active zone structure, accompanied by translocation of Liprin-α2 to active zones. These findings establish important roles for Liprin-α3 in active-zone assembly and function, and suggest that interplay between various Liprin-α proteins controls their active-zone localization.


2022 ◽  
Author(s):  
Iris A Speigel ◽  
Vanessa Osman ◽  
Hugh C Hemmings

Volatile anesthetics alter presynaptic function including effects on Ca2+ influx and neurotransmitter release. These actions are proposed to play important roles in their pleiotropic neurophysiological effects including unconsciousness and amnesia. The nitric oxide and cyclic guanosine monophosphate (NO/cGMP) signaling pathway has been implicated in presynaptic mechanisms, and disruption of NO/cGMP signaling has been shown to alter sensitivity to volatile anesthetics in vivo. We investigated NO/cGMP signaling in relation to volatile anesthetic actions in cultured rat hippocampal neurons using pharmacological tools and genetically encoded biosensors of cGMP levels. Using the fluorescent biosensor cGull we found that electrical stmulation-evoked NMDA-type glutamate receptor-independent presynaptic cGMP transients were inhibited -33.2% by isoflurane (0.51 mM) and -23.8% by sevoflurane (0.57 mM) (p<0.0001) compared to a stimulation without anesthetic. Isoflurane and sevoflurane inhibition of stimulation-evoked increases in presynaptic Ca2+ concentration, measured with synaptophysin-GCaMP6f, and synaptic vesicle exocytosis, measured with synaptophysin-pHlourin, were reduced by in neurons expressing the cGMP scavenger sponGee. This reduction in anesthetic effect was recapitulated by inhibiting HCN channels, a cGMP-modulated effector that can facilitate glutamate release. We propose that volatile anesthetics depress presynaptic cGMP signaling and downstream effectors like HCN channels that are essential to presynaptic function and excitability. These findings identify a novel mechanism by which volatile anesthetics depress synaptic transmission via second messenger signaling involving the NO/cGMP pathway.


2020 ◽  
Author(s):  
Byoung Ju Lee ◽  
Che Ho Yang ◽  
Seung Yeon Lee ◽  
Suk-Ho Lee ◽  
Yujin Kim ◽  
...  

ABSTRACTNeurotransmitter release occurs either synchronously to action potentials or spontaneously, yet whether molecular machineries underlying evoked and spontaneous release are identical, especially whether voltage-gated Ca2+ channels (VGCCs) can trigger spontaneous events has been in debate. To elucidate this issue, we characterized Ca2+ dependency of miniature excitatory postsynaptic currents (mEPSCs) in autaptic cultured hippocampal neurons. We found that 58 % mEPSC frequency was dependent on extracellular Ca2+([Ca2+]o), and Ca2+cooperativity of spontaneous release was comparable to that of evoked release. Moreover, most (> 90 %) of [Ca2+]o-dependent mEPSCs was attributable to VGCCs. Coupling distance between VGCCs and Ca2+ sensors was estimated as tight for both spontaneous and evoked release (~22 nm). In hippocampal slices, VGCC-dependence on spontaneous release was also observed, but to a different extent, at different areas and ages. At the calyx of Held synapses, mEPSCs showed VGCC-dependence in type 1 mature synapses where VGCCs and Ca2+ sensors are tightly coupled, but not in immature synapses. These data strongly suggest that the distance between VGCCs and Ca2+ sensors is the key factor to determine VGCC dependence of spontaneous release.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Javier Emperador-Melero ◽  
Man Yan Wong ◽  
Shan Shan H. Wang ◽  
Giovanni de Nola ◽  
Hajnalka Nyitrai ◽  
...  

AbstractThe active zone of a presynaptic nerve terminal defines sites for neurotransmitter release. Its protein machinery may be organized through liquid–liquid phase separation, a mechanism for the formation of membrane-less subcellular compartments. Here, we show that the active zone protein Liprin-α3 rapidly and reversibly undergoes phase separation in transfected HEK293T cells. Condensate formation is triggered by Liprin-α3 PKC-phosphorylation at serine-760, and RIM and Munc13 are co-recruited into membrane-attached condensates. Phospho-specific antibodies establish phosphorylation of Liprin-α3 serine-760 in transfected cells and mouse brain tissue. In primary hippocampal neurons of newly generated Liprin-α2/α3 double knockout mice, synaptic levels of RIM and Munc13 are reduced and the pool of releasable vesicles is decreased. Re-expression of Liprin-α3 restored these presynaptic defects, while mutating the Liprin-α3 phosphorylation site to abolish phase condensation prevented this rescue. Finally, PKC activation in these neurons acutely increased RIM, Munc13 and neurotransmitter release, which depended on the presence of phosphorylatable Liprin-α3. Our findings indicate that PKC-mediated phosphorylation of Liprin-α3 triggers its phase separation and modulates active zone structure and function.


2016 ◽  
Vol 62 (8) ◽  
pp. 726-736 ◽  
Author(s):  
Sandeep Grover ◽  
Nandita Hazari ◽  
Jitender Aneja ◽  
Subho Chakrabarti ◽  
Sunil Sharma ◽  
...  

Background and Aim: The goal of treatment in mental illness has evolved from a symptom-based approach to a personal recovery–based approach. The aim of this study was to evaluate the predictors of personal recovery among patients with bipolar disorder. Methodology: A total of 185 patients with bipolar disorder, currently in remission, were evaluated on Recovery Assessment Scale (RAS), Internalized Stigma of Mental Illness Scale (ISMIS), Brief Religious coping scale (RCOPE), Duke University Religiosity Index (DUREL), Religiousness Measures Scale, Hamilton depression rating scale (HDRS), Young Mania rating scale (YMRS) and Global Assessment of Functioning (GAF) scale. Results: The mean age of the sample was 40.5 (standard deviation (SD), 11.26) years. Majority of the participants were male, married, working, Hindu by religion and belonged to extended/joint families of urban background. In the regression analysis, RAS scores were predicted significantly by discrimination experience, stereotype endorsement and alienation domains of ISMIS, level of functioning as assessed by GAF, residual depressive symptoms as assessed by HDRS and occupational status. The level of variance explained for total RAS score and various RAS domains ranged from 36.2% to 46.9%. Conclusion: This study suggests that personal recovery among patients with bipolar disorder is affected by stigma, level of functioning, residual depressive symptoms and employment status of patients with bipolar disorder.


2021 ◽  
Author(s):  
Kelly H. Oh ◽  
Mia Krout ◽  
Janet E. Richmond ◽  
Hongkyun Kim

AbstractPresynaptic active zone proteins couple calcium influx with synaptic vesicle exocytosis. However, the control of presynaptic calcium channel clustering by active zone proteins is not completely understood. In a C. elegans forward genetic screen, we find that UNC-10/RIM (Rab3-interacting molecule) and SYD-2/Liprin-α regulate presynaptic clustering of UNC-2, the CaV2 channel ortholog. We further quantitatively analyzed live animals using endogenously GFP-tagged UNC-2 and active zone components. Consistent with the interaction between RIM and CaV2 in mammals, the intensity and number of UNC-2 channel clusters at presynaptic terminals were greatly reduced in unc-10 mutant animals. To understand how SYD-2 regulates presynaptic UNC-2 channel clustering, we analyzed presynaptic localization of endogenous SYD-2, UNC-10, RIMB-1/RIM-BP (RIM binding protein), and ELKS-1. Our analysis revealed that while SYD-2 is the most critical for active zone assembly, loss of SYD-2 function does not completely abolish presynaptic localization of UNC-10, RIMB-1, and ELKS-1, suggesting an existence of SYD-2-independent active zone assembly. UNC-2 localization analysis in double and triple mutants of active zone components show that SYD-2 promotes UNC-2 clustering by partially controlling UNC-10 localization, and ELKS-1 and RIMB-1 also contribute to UNC-2 channel clustering. In addition, we find that core active zone proteins are unequal in their abundance. While the abundance of UNC-10 at the active zone is comparable to UNC-2, SYD-2 and ELKS-1 are twice more and RIMB-1 four times more abundant than UNC-2. Together our data show that UNC-10, SYD-2, RIMB-1, and ELKS-1 control presynaptic UNC-2 channel clustering in redundant yet distinct manners.Significance StatementPrecise control of neurotransmission is dependent on the tight coupling of the calcium influx through voltage-gated calcium channels (VGCCs) to the exocytosis machinery at the presynaptic active zones. However, how these VGCCs are tethered to the active zone is incompletely understood. To understand the mechanism of presynaptic VGCC localization, we performed a C. elegans forward genetic screen and quantitatively analyzed endogenous active zones and presynaptic VGCCs. In addition to RIM (Rab3-interacting molecule), our study finds that SYD-2/Liprin-α is critical for presynaptic localization of VGCCs. Yet, the loss of SYD-2, the master active zone scaffolding protein, does not completely abolish the presynaptic localization of the VGCC, showing that the active zone is a resilient structure assembled by redundant mechanisms.


2020 ◽  
Vol 5 (2) ◽  
pp. 67-82
Author(s):  
MATT HARGRAVE

This article addresses the subject of stand-up and mental health through the prism of comic persona, generating new, non-diagnostic discourses around mental illness. The article focuses on British and Australian comedians whose material addresses conditions such as bipolar disorder (John Scott), depression and anxiety (Seymour Mace; Lauren Pattison; Felicity Ward), or feigns the staging of mental collapse (Stewart Lee). Based on the analysis of live events and one-on-one interviews, the essay considers the role that persona plays in mediating the relationship between the comedian and their material, arguing that shaping persona is key to developing practices framed within a poetics of vulnerability.


Sign in / Sign up

Export Citation Format

Share Document