scholarly journals Real-time PCR assay for detection and differentiation of Coccidioides immitis and Coccidioides posadasii from culture and clinical specimens

2021 ◽  
Vol 15 (9) ◽  
pp. e0009765
Author(s):  
Sudha Chaturvedi ◽  
Tanya R. Victor ◽  
Anuradha Marathe ◽  
Ketevan Sidamonidze ◽  
Kelly L. Crucillo ◽  
...  

Coccidioidomycosis (Valley Fever) is a pulmonary and systemic fungal disease with increasing incidence and expanding endemic areas. The differentiation of etiologic agents Coccidioides immitis and C. posadasii remains problematic in the clinical laboratories as conventional PCR and satellite typing schemes are not facile. Therefore, we developed Cy5- and FAM-labeled TaqMan-probes for duplex real-time PCR assay for rapid differentiation of C. immitis and C. posadasii from culture and clinical specimens. The RRA2 gene encoding proline-rich antigen 2, specific for Coccidioides genus, was the source for the first set of primers and probe. Coccidioides immitis contig 2.2 (GenBank: AAEC02000002.1) was used to design the second set of primers and probe. The second primers/probe did not amplify the corresponding C. posadasii DNA, because of an 86-bp deletion in the contig. The assay was highly sensitive with limit of detection of 0.1 pg gDNA/PCR reaction, which was equivalent to approximately ten genome copies of C. immitis or C. posadasii. The assay was highly specific with no cross-reactivity to the wide range of fungal and bacterial pathogens. Retrospective analysis of fungal isolates and primary specimens submitted from 1995 to 2020 confirmed 168 isolates and four primary specimens as C. posadasii and 30 isolates as C. immitis from human coccidioidomycosis cases, while all eight primary samples from two animals (rhesus monkey and rhinoceros) were confirmed as C. posadasii. A preliminary analysis of cerebrospinal fluid (CSF) and pleural fluid samples showed positive correlation between serology tests and real-time PCR for two of the 15 samples. The Coccidioides spp. duplex real-time PCR will allow rapid differentiation of C. immitis and C. posadasii from clinical specimens and further augment the treatment and surveillance of coccidioidomycosis.

2021 ◽  
Author(s):  
Sudha Chaturvedi ◽  
Tanya R Victor ◽  
Anuradha Marathe ◽  
Ketevan Sidamonidze ◽  
Kelly L Crucillo ◽  
...  

Coccidioidomycosis (Valley Fever) is a pulmonary and systemic fungal disease with increasing incidence and expanding endemic areas. The differentiation of etiologic agents Coccidioides immitis and C. posadasii remains problematic in the clinical laboratories as conventional PCR and satellite typing schemes are not facile. Therefore, we developed Cy5- and FAM-labeled TaqMan-probes for duplex real-time PCR assay for rapid differentiation of C. immitis and C. posadasii from culture and clinical specimens. The RRA2 gene encoding proline-rich antigen 2, specific for Coccidioides genus, was the source for the first set of primers and probe. Coccidioides immitis contig 2.2 (GenBank: AAEC02000002.1) was used to design the second set of primers and probe. The second primers/probe did not amplify the corresponding C. posadasii DNA, because of an 86-bp deletion in the contig. The assay was highly sensitive with limit of detection of 0.1 pg gDNA/PCR reaction, which was equivalent to approximately ten genome copies of C. immitis or C. posadasii. The assay was highly specific with no cross-reactivity to the wide range of fungal and bacterial pathogens. Retrospective analysis of fungal isolates and primary specimens submitted from 1995 to 2020 confirmed 129 isolates and three primary specimens as C. posadasii and 23 isolates as C. immitis from human coccidioidomycosis cases, while all eight primary samples from two animals were confirmed as C. posadasii. A preliminary analysis of cerebrospinal fluid (CSF) and pleural fluid samples showed positive correlation between serology tests and real-time PCR for two of the 15 samples. The Coccidioides spp. duplex real-time PCR will allow rapid differentiation of C. immitis and C. posadasii from clinical specimens and further augment the surveillance of coccidioidomycosis.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 332
Author(s):  
Jasmin Wrage ◽  
Oxana Kleyner ◽  
Sascha Rohn ◽  
Jürgen Kuballa

So far, only a few cases of immunoglobulin E (IgE)-mediated coconut allergies have been described in the literature. Due to a growing consumption of coconut-containing foods in occidental countries, the number of coconut allergies may also increase. As there is no causative immunotherapy in clinical routine, appropriate food labelling is particularly important, also with regard to cross-contamination, to prevent serious health consequences. The purpose of this study was to develop a DNA-based detection method for coconut (Cocos nucifera). Initially, three sets of coconut-specific primers were designed and tested. A TaqMan™ probe was then developed to identify and quantify coconut by real-time PCR assay. With 27 other plant and animal species, the specificity of the primer/probe system was tested and cross reactivity was excluded. In a dilution series, a limit of detection of 1 pg/µL was determined. Thus, the developed real-time PCR assay is a suitable method to detect coconut in food.


2006 ◽  
Vol 52 (2) ◽  
pp. 316-319 ◽  
Author(s):  
Andreas Nitsche ◽  
Mathias Büttner ◽  
Sonja Wilhelm ◽  
Georg Pauli ◽  
Hermann Meyer

Abstract Background: Detection of parapoxviruses is important in various animals as well as in humans as zoonotic infections. Reliable detection of parapoxviruses is fundamental for the exclusion of other rash-causing illnesses, for both veterinarians and medical practitioners. To date, however, no real-time PCR assay for the detection of parapoxviruses has been reported. Methods: A minor groove binder–based quantitative real-time PCR assay targeting the B2L gene of parapoxviruses was developed on the ABI Prism and the LightCycler platforms. Results: The real-time PCR assay successfully amplified DNA fragments from a total of 41 parapoxvirus strains and isolates representing the species orf virus, bovine papular stomatitis virus, pseudocowpoxvirus, and sealpoxvirus. Probit analysis gave a limit of detection of 4.7 copies per assay (95% confidence interval, 3.7–6.8 copies per reaction). Scabs contain a sufficient amount of parapoxvirus DNA and can therefore be used for PCR without any DNA preparation step. No cross-reactivity to human, bovine, or sheep genomic DNA or other DNA viruses, including orthopoxviruses, molluscum contagiosum viruses, and yaba-like disease viruses, was observed. Conclusion: The presented assay is suitable for the detection of parapoxvirus infections in clinical material of human and animal origin.


2019 ◽  
Author(s):  
L. Leach ◽  
A. Russell ◽  
Y. Zhu ◽  
S. Chaturvedi ◽  
V. Chaturvedi

ABSTRACTThe multidrug-resistant yeast pathogen Candida auris continues to cause outbreaks and clusters of clinical cases worldwide. Previously, we developed a real-time PCR assay for the detection of C. auris from surveillance samples (Leach et al. JCM. 2018: 56, e01223-17). The assay played a crucial role in the ongoing investigations of C. auris outbreak in New York City. To ease the implementation of the assay in other laboratories, we developed an automated sample-to-result real-time C. auris PCR assay using BD MAX™ open system. We optimized sample extraction at three different temperatures and four incubation periods. Sensitivity was determined using eight pools of patient samples, and specificity was calculated using four clades of C. auris, and closely and distantly related yeasts. Three independent extractions and testing of two patient sample pools in the quadruplicate yielded assay precision. BD MAX™ optimum assay conditions were: DNA extraction at 75°C for 20 min, and the use of PerfeCTa Multiplex qPCR ToughMix. The limit of detection (LOD) of the assay was one C. auris CFU/PCR reaction. We detected all four clades of C. auris without cross-reactivity to other yeasts. Of the 110 patient surveillance samples tested, 50 were positive for C. auris using the BD MAX™ System with 96% clinical sensitivity and 94% accuracy compared to the manual assay. BD MAX™ assay allows high-throughput C. auris screening of 180 surveillance samples in a 12-hour workday.


2019 ◽  
Vol 57 (10) ◽  
Author(s):  
L. Leach ◽  
A. Russell ◽  
Y. Zhu ◽  
S. Chaturvedi ◽  
V. Chaturvedi

ABSTRACT The multidrug-resistant yeast pathogen Candida auris continues to cause outbreaks and clusters of clinical cases worldwide. Previously, we developed a real-time PCR assay for the detection of C. auris from surveillance samples (L. Leach, Y. Zhu, and S. Chaturvedi, J Clin Microbiol 56:e01223-17, 2018, https://doi.org/10.1128/JCM.01223-17). The assay played a crucial role in the ongoing investigations of the C. auris outbreak in New York City. To ease the implementation of the assay in other laboratories, we developed an automated sample-to-result real-time C. auris PCR assay using the BD Max open system. We optimized sample extraction at three different temperatures and four incubation periods. Sensitivity was determined using eight pools of patient samples, and specificity was calculated using four clades of C. auris and closely and distantly related yeasts. Three independent extractions and testing of two patient sample pools in quadruplicate yielded assay precision. BD Max optimum assay conditions were as follows: DNA extraction at 75°C for 20 min and the use of PerfeCTa multiplex quantitative PCR (qPCR) ToughMix. The limit of detection (LOD) of the assay was one C. auris CFU/PCR. We detected all four clades of C. auris without cross-reactivity to other yeasts. Of the 110 patient surveillance samples tested, 50 were positive for C. auris using the BD Max system with 96% clinical sensitivity and 94% accuracy compared to the results of the manual assay. The BD Max assay allows high-throughput C. auris screening of 180 surveillance samples in a 12-h workday.


2018 ◽  
Vol 56 (7) ◽  
pp. 1133-1139 ◽  
Author(s):  
Hanah Kim ◽  
Mina Hur ◽  
Eunsin Bae ◽  
Kyung-A Lee ◽  
Woo-In Lee

Abstract Background: Hepatitis B virus (HBV) nucleic acid amplification testing (NAAT) is important for the diagnosis and management of HBV infection. We evaluated the analytical performance of the cobas HBV NAAT (Roche Diagnostics GmbH, Mannheim, Germany) on the cobas 4800 System in comparison with COBAS AmpliPrep/COBAS TaqMan HBV Test (CAP/CTM HBV). Methods: Precision was evaluated using three levels of cobas HBV/HCV/HIV-1 Control Kit, and linearity was evaluated across the anticipated measuring range (10.0–1.0×109 IU/mL) at seven levels using clinical samples. Detection capability, including limit of blank (LOB), limit of detection (LOD) and limit of quantitation (LOQ), was verified using the 4th WHO International Standard for HBV DNA for NAT (NIBSC code: 10/266). Correlation between the two systems was compared using 205 clinical samples (102 sera and 103 EDTA plasma). Results: Repeatability and total imprecision (coefficient of variation) ranged from 0.5% to 3.8% and from 0.5% to 3.5%, respectively. Linearity (coefficient of determination, R2) was 0.999. LOB, LOD and LOQ were all acceptable within the observed proportion rate (85%). Correlation was very high between the two systems in both serum and plasma samples (correlation coefficient [r]=0.995). Conclusions: The new cobas HBV real-time PCR assay on the cobas 4800 System showed reliable analytical performances.


2018 ◽  
Vol 56 (8) ◽  
Author(s):  
Nawal El Houmami ◽  
Guillaume André Durand ◽  
Janek Bzdrenga ◽  
Anne Darmon ◽  
Philippe Minodier ◽  
...  

ABSTRACTKingella kingaeis a significant pediatric pathogen responsible for bone and joint infections, occult bacteremia, and endocarditis in early childhood. Past efforts to detect this bacterium using culture and broad-range 16S rRNA gene PCR assays from clinical specimens have proven unsatisfactory; therefore, by the late 2000s, these were gradually phased out to explore the benefits of specific real-time PCR tests targeting thegroELgene and the RTX locus ofK. kingae. However, recent studies showed that real-time PCR (RT-PCR) assays targeting theKingellasp. RTX locus that are currently available for the diagnosis ofK. kingaeinfection lack specificity because they could not distinguish betweenK. kingaeand the recently describedKingella negevensisspecies. Furthermore,in silicoanalysis of thegroELgene from a large collection of 45K. kingaestrains showed that primers and probes fromK. kingaegroEL-based RT-PCR assays display a few mismatches withK. kingae groELvariations that may result in decreased detection sensitivity, especially in paucibacillary clinical specimens. In order to provide an alternative togroEL- and RTX-targeting RT-PCR assays that may suffer from suboptimal specificity and sensitivity, aK. kingae-specific RT-PCR assay targeting the malate dehydrogenase (mdh) gene was developed for predicting no mismatch between primers and probe and 18 variants of theK. kingae mdhgene from 20 distinct sequence types ofK. kingae. This novelK. kingae-specific RT-PCR assay demonstrated high specificity and sensitivity and was successfully used to diagnoseK. kingaeinfections and carriage in 104 clinical specimens from children between 7 months and 7 years old.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Cyril C. Y. Yip ◽  
Siddharth Sridhar ◽  
Kit-Hang Leung ◽  
Andrew K. W. Cheng ◽  
Kwok-Hung Chan ◽  
...  

Several commercial PCR kits are available for detection of herpes simplex virus (HSV) and varicella zoster virus (VZV), but the test performance of one CE-marked in vitro diagnostic kit—RealStar® alpha Herpesvirus PCR Kit—has not been well studied. This study evaluated the performance of RealStar® alpha Herpesvirus PCR Kit 1.0 on the LightCycler® 480 Instrument II for detection and differentiation of HSV-1, HSV-2, and VZV in human clinical specimens. We evaluated the analytical sensitivity of the RealStar® and in-house multiplex real-time PCR assays using serial dilutions of nucleic acids extracted from clinical specimens. The analytical sensitivity of the RealStar® assay was 10, 32, and 100 copies/reaction for HSV-1, HSV-2, and VZV, respectively, which was slightly higher than that of the in-house multiplex real-time PCR assay. Reproducibility of the cycle threshold (Cp) values for each viral target was satisfactory with the intra- and interassay coefficient of variation values below 5% for both assays. One-hundred and fifty-three clinical specimens and 15 proficiency testing samples were used to evaluate the diagnostic performance of RealStar® alpha Herpesvirus PCR Kit against the in-house multiplex real-time PCR assay. The RealStar® assay showed 100% sensitivity and specificity when compared to the in-house assay. Cp values of the RealStar® and in-house assays showed excellent correlation. RealStar® alpha Herpesvirus PCR is a sensitive, specific, and reliable assay for the detection of HSV-1, HSV-2, and VZV, with less extensive verification requirements compared to a laboratory developed assay.


Sign in / Sign up

Export Citation Format

Share Document