scholarly journals A Comparative Chemogenomics Strategy to Predict Potential Drug Targets in the Metazoan Pathogen, Schistosoma mansoni

PLoS ONE ◽  
2009 ◽  
Vol 4 (2) ◽  
pp. e4413 ◽  
Author(s):  
Conor R. Caffrey ◽  
Andreas Rohwer ◽  
Frank Oellien ◽  
Richard J. Marhöfer ◽  
Simon Braschi ◽  
...  
2013 ◽  
Vol 57 (12) ◽  
pp. 5969-5976 ◽  
Author(s):  
Peter D. Ziniel ◽  
Janish Desai ◽  
Cynthia L. Cass ◽  
Craig Gatto ◽  
Eric Oldfield ◽  
...  

ABSTRACTSchistosomiasis affects over 200 million people worldwide, with over 200,000 deaths annually. Currently, praziquantel is the only drug available against schistosomiasis. We report here thatSchistosoma mansonifarnesyl diphosphate synthase (SmFPPS) and geranylgeranyl diphosphate synthase (SmGGPPS) are potential drug targets for the treatment of schistosomiasis. We expressed active, recombinantSmFPPS andSmGGPPS for subsequent kinetic characterization and testing against a variety of bisphosphonate inhibitors. RecombinantSmFPPS was found to be a soluble 44.2-kDa protein, whileSmGGPPS was a soluble 38.3-kDa protein. Characterization of the substrate utilization of the two enzymes indicates that they have overlapping substrate specificities. AgainstSmFPPS, several bisphosphonates had 50% inhibitory concentrations (IC50s) in the low micromolar to nanomolar range; these inhibitors had significantly less activity againstSmGGPPS. Several lipophilic bisphosphonates were active againstex vivoadult worms, with worm death occurring over 4 to 6 days. These results indicate that FPPS and GGPPS could be of interest in the context of the emerging resistance to praziquantel in schistosomiasis therapy.


Parasitology ◽  
2012 ◽  
Vol 139 (4) ◽  
pp. 497-505 ◽  
Author(s):  
THERESIA MANNECK ◽  
JENNIFER KEISER ◽  
JOACHIM MÜLLER

SUMMARYThe antimalarial drug mefloquine has promising antischistosomal properties killing haematophagous adult schistosomes as well as schistosomula. The mode of action and involved drug targets of mefloquine in Schistosoma mansoni schistosomula are unknown. In order to identify mefloquine-binding proteins and thus potential drug targets, mefloquine affinity chromatography with S. mansoni schistosomula crude extracts was performed. We found one specific mefloquine-binding protein that was identified by mass spectrometry as the glycolytic enzyme enolase (Q27877). Enolase activity assays were performed on schistosomula crude extracts and on the recombinant enolase Q27877 expressed in Escherichia coli. In schistosomula crude extracts enolase activity was inhibited by mefloquine and by the enolase inhibitor sodium fluoride, while activity of the recombinant enolase was not affected. In contrast to enolase from crude extracts, recombinant Q27877 did not bind to mefloquine-agarose. Using isothermal microcalorimetry, we next investigated the metabolic inhibition of mefloquine and 3 known glycolytic inhibitors in Schistosoma spp., namely sodium fluoride, 3-bromopyruvate and menadione on schistosomula in the presence or absence of glucose. We found that in the presence of glucose, schistosomula were less affected by mefloquine, sodium fluoride and 3-bromopyruvate, whereas glucose had no protective effect when schistosomula had been exposed to menadione. These results suggest a potential role of mefloquine as an inhibitor of glycolysis, at least in stages where other targets like haem degradation are not relevant.


2018 ◽  
Vol 17 (5) ◽  
pp. 325-337 ◽  
Author(s):  
Hojjat Borna ◽  
Kasim Assadoulahei ◽  
Gholamhossein Riazi ◽  
Asghar Beigi Harchegani ◽  
Alireza Shahriary

Background & Objective: Neurodegenrative diseases are among the most widespread lifethreatening disorders around the world in elderly ages. The common feature of a group of neurodegenerative disorders, called tauopathies, is an accumulation of microtubule associated protein tau inside the neurons. The exact mechanism underlying tauopathies is not well-understood but several factors such as traumatic brain injuries and genetics are considered as potential risk factors. Although tau protein is well-known for its key role in stabilizing and organization of axonal microtubule network, it bears a broad range of functions including DNA protection and participation in signaling pathways. Moreover, the flexible unfolded structure of tau facilitates modification of tau by a wide range of intracellular enzymes which in turn broadens tau function and interaction spectrum. The distinctive properties of tau protein concomitant with the crucial role of tau interaction partners in the progression of neurodegeneration suggest tau and its binding partners as potential drug targets for the treatment of neurodegenerative diseases. Conclusion: This review aims to give a detailed description of structure, functions and interactions of tau protein in order to provide insight into potential therapeutic targets for treatment of tauopathies.


2021 ◽  
Vol 7 (3) ◽  
pp. 518-534
Author(s):  
Lauren B. Arendse ◽  
Susan Wyllie ◽  
Kelly Chibale ◽  
Ian H. Gilbert

Sign in / Sign up

Export Citation Format

Share Document