scholarly journals Gut microbiome differences among Mexican Americans with and without type 2 diabetes mellitus

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251245
Author(s):  
Amanda K. Kitten ◽  
Laurajo Ryan ◽  
Grace C. Lee ◽  
Bertha E. Flores ◽  
Kelly R. Reveles

Purpose Type 2 diabetes mellitus (T2DM) is an urgent public health problem and disproportionately affects Mexican Americans. The gut microbiome contributes to the pathophysiology of diabetes; however, no studies have examined this association in Mexican-Americans. The objective of this study was to compare gut microbiome composition between Mexican-Americans with and without T2DM. Methods This was a cross-sectional study of volunteers from San Antonio, TX. Subjects were 18 years or older and self-identified as Mexican American. Subjects were grouped by prior T2DM diagnosis. Eligible subjects attended a clinic visit to provide demographic and medical information. Thereafter, subjects recorded their dietary intake for three days and collected a stool sample on the fourth day. Stool 16s rRNA sequences were classified into operational taxonomic units (OTUs) via the mothur bayesian classifier and referenced to the Greengenes database. Shannon diversity and bacterial taxa relative abundance were compared between groups using the Wilcoxon rank sum test. Beta diversity was estimated using Bray-Curtis indices and compared between groups using PERMANOVA. Results Thirty-seven subjects were included, 14 (38%) with diabetes and 23 (62%) without diabetes. Groups were well-matched by body mass index and comorbid conditions. Shannon diversity was not significantly different between those with and without T2DM (3.26 vs. 3.31; p = 0.341). Beta diversity was not significantly associated with T2DM diagnosis (p = 0.201). The relative abundance of the most common bacterial phyla and families did not significantly differ between groups; however, 16 OTUs were significantly different between groups. Conclusions Although alpha diversity was not significantly different between diabetic and non-diabetic Mexican Americans, the abundance of certain bacterial taxa were significantly different between groups.

2021 ◽  
Vol 22 (7) ◽  
pp. 3566
Author(s):  
Chae Bin Lee ◽  
Soon Uk Chae ◽  
Seong Jun Jo ◽  
Ui Min Jerng ◽  
Soo Kyung Bae

Metformin is the first-line pharmacotherapy for treating type 2 diabetes mellitus (T2DM); however, its mechanism of modulating glucose metabolism is elusive. Recent advances have identified the gut as a potential target of metformin. As patients with metabolic disorders exhibit dysbiosis, the gut microbiome has garnered interest as a potential target for metabolic disease. Henceforth, studies have focused on unraveling the relationship of metabolic disorders with the human gut microbiome. According to various metagenome studies, gut dysbiosis is evident in T2DM patients. Besides this, alterations in the gut microbiome were also observed in the metformin-treated T2DM patients compared to the non-treated T2DM patients. Thus, several studies on rodents have suggested potential mechanisms interacting with the gut microbiome, including regulation of glucose metabolism, an increase in short-chain fatty acids, strengthening intestinal permeability against lipopolysaccharides, modulating the immune response, and interaction with bile acids. Furthermore, human studies have demonstrated evidence substantiating the hypotheses based on rodent studies. This review discusses the current knowledge of how metformin modulates T2DM with respect to the gut microbiome and discusses the prospect of harnessing this mechanism in treating T2DM.


2021 ◽  
Author(s):  
Rocío Mateo-Gallego ◽  
Isabel Moreno-Indias ◽  
Ana M. Bea ◽  
Lidia Sánchez-Alcoholado ◽  
Antonio J. Fumanal ◽  
...  

An alcohol-free beer including the substitution of regular carbohydrates for low doses of isomaltulose and maltodextrin within meals significantly impacts gut microbiota in diabetic subjects with overweight or obesity.


2009 ◽  
Vol 53 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Hala Tfayli ◽  
Silva Arslanian

Type 2 diabetes mellitus (T2DM) in children and adolescents is an important Public Health problem against the backdrop of the epidemic of childhood obesity. The clinical presentation of T2DM in youth is heterogeneous from minimal symptomatology to diabetic ketoacidosis. The increasing rates of youth T2DM have paralleled the escalating rates of obesity, which is the major risk factor impacting insulin sensitivity. Additional risk factors include minority race, family history of diabetes mellitus, maternal diabetes during pregnancy, pubertal age group and conditions associated with insulin resistance (IR) - such as polycystic ovary syndrome (PCOS). The pathophysiology of T2DM has been studied extensively in adults, and it is widely accepted that IR together with beta-cell failure are necessary for the development of clinical diabetes mellitus in adulthood. However, pathophysiologic studies in youth are limited and in some cases conflicting. Similar to adults, IR is a prerequisite, but beta-cell failure is necessary for progression from normal glucose tolerance to prediabetes and frank diabetes in youth. Even though rates of T2DM in youth are increasing, the overall prevalence remains low if compared with type 1 diabetes mellitus (T1DM). However, as youth with T1DM are becoming obese, the clinical distinction between T2DM and obese T1DM has become difficult, because of the overlapping clinical picture with evidence of islet cell autoimmunity in a significant proportion of clinically diagnosed youth with T2DM. The latter are most likely obese children with autoimmune T1DM who carry a misdiagnosis of T2DM. Further research is needed to probe the pathophysiological, immunological, and metabolic differences between these two groups in the hopes of assigning appropriate therapeutic regimens. These challenges combined with the evolving picture of youth T2DM and its future complications provide unending opportunities for acquisition of new knowledge in the field of childhood diabetes.


1999 ◽  
Vol 64 (4) ◽  
pp. 1127-1140 ◽  
Author(s):  
Ravindranath Duggirala ◽  
John Blangero ◽  
Laura Almasy ◽  
Thomas D. Dyer ◽  
Kenneth L. Williams ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Sandra Mrozinska ◽  
Piotr Radkowski ◽  
Tomasz Gosiewski ◽  
Magdalena Szopa ◽  
Malgorzata Bulanda ◽  
...  

Background. Type 2 diabetes mellitus (T2DM) is determined by genetic and environmental factors. There have been many studies on the relationship between the composition of the gastrointestinal bacterial flora, T2DM, and obesity. There are no data, however, on the gut microbiome structure in monogenic forms of the disease including Maturity Onset Diabetes of the Young (MODY).Methods. The aim of the investigation was to compare the qualitative parameters of the colonic flora in patients with HNF1A-MODY and T2DM and healthy individuals. 16S sequencing of bacterial DNA isolated from the collected fecal samples using the MiSeq platform was performed.Results. There were significant between-group differences in the bacterial profile. At the phylum level, the amount of Proteobacteria was higher (p=0.0006) and the amount of Bacteroidetes was lower (p=0.0005) in T2DM group in comparison to the control group. In HNF1A-MODY group, the frequency of Bacteroidetes was lower than in the control group (p=0.0143). At the order level, Turicibacterales was more abundant in HNF1A-MODY group than in T2DM group.Conclusions. It appears that there are differences in the gut microbiome composition between patients with HNF1A-MODY and type 2 diabetes. Further investigation on this matter should be conducted.


Biomedicines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Angelos K. Sikalidis ◽  
Adeline Maykish

Type 2 diabetes mellitus (T2DM) is a disease that affects over 9% of the United States population and is closely linked to obesity. While obesity was once thought to stem from a sedentary lifestyle and diets high in fat, recent evidence supports the idea that there is more complexity pertinent to the issue. The human gut microbiome has recently been the focus in terms of influencing disease onset. Evidence has shown that the microbiome may be more closely related to T2DM than what was originally thought. High fat diets typically result in poor microbiome heath, which then shifts the gut into a state of dysbiosis. Dysbiosis can then lead to metabolic deregulation, including increased insulin resistance and inflammation, two key factors in the development of T2DM. The purpose of this review is to discuss how microbiome relates to T2DM onset, especially considering obesity, insulin resistance, and inflammation.


2018 ◽  
Vol 315 (5) ◽  
pp. E961-E972 ◽  
Author(s):  
Brian D. Piccolo ◽  
James L. Graham ◽  
Kimber L. Stanhope ◽  
Intawat Nookaew ◽  
Kelly E. Mercer ◽  
...  

The composition of the gut microbiome is altered in obesity and type 2 diabetes; however, it is not known whether these alterations are mediated by dietary factors or related to declines in metabolic health. To address this, cecal contents were collected from age-matched, chow-fed male University of California, Davis Type 2 Diabetes Mellitus (UCD-T2DM) rats before the onset of diabetes (prediabetic PD; n = 15), 2 wk recently diabetic (RD; n = 10), 3 mo (D3M; n = 11), and 6 mo (D6M; n = 8) postonset of diabetes. Bacterial species and functional gene counts were assessed by shotgun metagenomic sequencing of bacterial DNA in cecal contents, while metabolites were identified by gas chromatography-quadrupole time-off-flight-mass spectrometry. Metagenomic analysis showed a shift from Firmicutes species in early stages of diabetes (PD + RD) toward an enrichment of Bacteroidetes species in later stages of diabetes (D3M + D6M). In total, 45 bacterial species discriminated early and late stages of diabetes with 25 of these belonging to either Bacteroides or Prevotella genera. Furthermore, 61 bacterial gene clusters discriminated early and later stages of diabetes with elevations of enzymes related to stress response (e.g., glutathione and glutaredoxin) and amino acid, carbohydrate, and bacterial cell wall metabolism. Twenty-five cecal metabolites discriminated early vs. late stages of diabetes, with the largest differences observed in abundances of dehydroabietic acid and phosphate. Alterations in the gut microbiota and cecal metabolome track diabetes progression in UCD-T2DM rats when controlling for diet, age, and housing environment. Results suggest that diabetes-specific host signals impact the ecology and end product metabolites of the gut microbiome when diet is held constant.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6934
Author(s):  
Xiaoyan Xia ◽  
Jiao Xiao

Type 2 diabetes mellitus (T2DM) is a noteworthy worldwide public health problem. It represents a complex metabolic disorder, mainly characterized as hyperglycemia and lipid dysfunction. The gut microbiota dysbiosis has been proposed to play a role in the development of diabetes. Recently, there has been considerable interest in the use of medicine food homology (MFH) and functional food herbs (FF) to ameliorate diabetes and lead to a natural and healthy life. Hence, this review compiles some reports and findings to demonstrate that the practical use of the MFH/FF can modulate the homoeostasis of gut microbiota, thereby ameliorating the development of T2DM. The results provided useful data to support further investigation of the functional basis and application of MFH/FF to treat T2DM through maintaining intestinal homeostasis.


2020 ◽  
Vol 9 (4) ◽  
pp. 303
Author(s):  
Fatma Nuraisyah ◽  
Solikhah Solikhah ◽  
Rochana Ruliyandari

Diabetes is a public health problem in Indonesia that has been increasing in recent decades. Screening for diabetes was usually identified as pregnant women, adolescents, adults, children, older and obesity, while based on investigation descendent was yet. This cross-sectional study aimed to know the random level blood glucose of family history type 2 diabetes mellitus (T2DM). The target group for screening was people with a family history in one of their descent of T2DM with age >20 years in Kulon Progo, DIY, Indonesia. We conducted a detection of random level blood glucose from a venous blood sample. A high level of blood glucose was diagnosed when random blood glucose reaches ≥200 mg/dl. The participant with high level of blood glucose was 29.0%, while borderline blood glucose (≥110-199 mg/dl) was revealed 38.7% of 15.3% subject indicated with mother history. Descendant screening of family history T2DM is early detected respondent with high glucose level and reduced the severe complication.


Sign in / Sign up

Export Citation Format

Share Document