scholarly journals Structural characterisation of the Chaetomium thermophilum Chl1 helicase

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251261
Author(s):  
Zuzana Hodáková ◽  
Andrea Nans ◽  
Simone Kunzelmann ◽  
Shahid Mehmood ◽  
Ian Taylor ◽  
...  

Chl1 is a member of the XPD family of 5’-3’ DNA helicases, which perform a variety of roles in genome maintenance and transmission. They possess a variety of unique structural features, including the presence of a highly variable, partially-ordered insertion in the helicase domain 1. Chl1 has been shown to be required for chromosome segregation in yeast due to its role in the formation of persistent chromosome cohesion during S-phase. Here we present structural and biochemical data to show that Chl1 has the same overall domain organisation as other members of the XPD family, but with some conformational alterations. We also present data suggesting the insert domain in Chl1 regulates its DNA binding.

Hepatology ◽  
2008 ◽  
Vol 48 (5) ◽  
pp. 1467-1476 ◽  
Author(s):  
Silvia Martin-Lluesma ◽  
Céline Schaeffer ◽  
Eva Isabelle Robert ◽  
Pieter Cornelis van Breugel ◽  
Olivier Leupin ◽  
...  

2005 ◽  
Vol 168 (7) ◽  
pp. 999-1012 ◽  
Author(s):  
Jeff Bachant ◽  
Shannon R. Jessen ◽  
Sarah E. Kavanaugh ◽  
Candida S. Fielding

The budding yeast S phase checkpoint responds to hydroxyurea-induced nucleotide depletion by preventing replication fork collapse and the segregation of unreplicated chromosomes. Although the block to chromosome segregation has been thought to occur by inhibiting anaphase, we show checkpoint-defective rad53 mutants undergo cycles of spindle extension and collapse after hydroxyurea treatment that are distinct from anaphase cells. Furthermore, chromatid cohesion, whose dissolution triggers anaphase, is dispensable for S phase checkpoint arrest. Kinetochore–spindle attachments are required to prevent spindle extension during replication blocks, and chromosomes with two centromeres or an origin of replication juxtaposed to a centromere rescue the rad53 checkpoint defect. These observations suggest that checkpoint signaling is required to generate an inward force involved in maintaining preanaphase spindle integrity during DNA replication distress. We propose that by promoting replication fork integrity under these conditions Rad53 ensures centromere duplication. Replicating chromosomes can then bi-orient in a cohesin-independent manner to restrain untimely spindle extension.


2000 ◽  
Vol 113 (7) ◽  
pp. 1231-1239 ◽  
Author(s):  
Y. Bhaud ◽  
D. Guillebault ◽  
J. Lennon ◽  
H. Defacque ◽  
M.O. Soyer-Gobillard ◽  
...  

The morphology and behaviour of the chromosomes of dinoflagellates during the cell cycle appear to be unique among eukaryotes. We used synchronized and aphidicolin-blocked cultures of the dinoflagellate Crypthecodinium cohnii to describe the successive morphological changes that chromosomes undergo during the cell cycle. The chromosomes in early G(1) phase appeared to be loosely condensed with numerous structures protruding toward the nucleoplasm. They condensed in late G(1), before unwinding in S phase. The chromosomes in cells in G(2) phase were tightly condensed and had a double number of arches, as visualised by electron microscopy. During prophase, chromosomes elongated and split longitudinally, into characteristic V or Y shapes. We also used confocal microscopy to show a metaphase-like alignment of the chromosomes, which has never been described in dinoflagellates. The metaphase-like nucleus appeared flattened and enlarged, and continued to do so into anaphase. Chromosome segregation occurred via binding to the nuclear envelope surrounding the cytoplasmic channels and microtubule bundles. Our findings are summarized in a model of chromosome behaviour during the cell cycle.


2015 ◽  
Vol 2 (1) ◽  
pp. 24-28
Author(s):  
Sampath K ◽  
Jayabalakrishnan C

Ruthenium(III) complex, [RuBr2(AsPh3)2L] (where L = (E)-2-(2-chlorobenzylidene)-Nmethylhydrazinecarbothioamide) have been synthesized. Structural features of the complex were determined by various physico-chemical and spectral techniques. DNA binding of the complex was investigated by absorption spectroscopy which indicated that the complex bind to DNA via intercalation and this complex ind strongly than ligand. The complex has shown significant growth inhibition activity against a panel of bacteria which indicating the pharmacological significance of the ruthenium(III) complex.


2020 ◽  
Author(s):  
Alexander G. Kozlov ◽  
Timothy M. Lohman

AbstractE. coli single strand (ss) DNA binding protein (SSB) is an essential protein that binds ssDNA intermediates formed during genome maintenance. SSB homo-tetramers bind ssDNA in two major modes differing in occluded site size and cooperativity. The (SSB)35 mode in which ssDNA wraps on average around two subunits is favored at low [NaCl] and high SSB to DNA ratios and displays high “unlimited”, nearest-neighbor cooperativity forming long protein clusters. The (SSB)65 mode, in which ssDNA wraps completely around four subunits of the tetramer, is favored at higher [NaCl] (> 200 mM) and displays “limited” low cooperativity. Crystal structures of E. coli SSB and P. falciparum SSB show ssDNA bound to the SSB subunits (OB-folds) with opposite polarities of the sugar phosphate backbones. To investigate whether SSB subunits show a polarity preference for binding ssDNA, we examined EcSSB and PfSSB binding to a series of (dT)70 constructs in which the backbone polarity was switched in the middle of the DNA by incorporating a reverse polarity (RP) phosphodiester linkage, either 3’-3’ or 5’-5’. We find only minor effects on the DNA binding properties for these RP constructs, although (dT)70 with a 3’-3’ polarity switch shows decreased affinity for EcSSB in the (SSB)65 mode and lower cooperativity in the (SSB)35 mode. However, (dT)70 in which every phosphodiester linkage is reversed, does not form a completely wrapped (SSB)65 mode, but rather binds EcSSB in the (SSB)35 mode, with little cooperativity. In contrast, PfSSB, which binds ssDNA only in an (SSB)65 mode and with opposite backbone polarity and different topology, shows little effect of backbone polarity on its DNA binding properties. We present structural models suggesting that strict backbone polarity can be maintained for ssDNA binding to the individual OB-folds if there is a change in ssDNA wrapping topology of the RP ssDNA.Statement of SignificanceSingle stranded (ss) DNA binding (SSB) proteins are essential for genome maintenance. Usually homo-tetrameric, bacterial SSBs bind ssDNA in multiple modes, one of which involves wrapping 65 nucleotides of ssDNA around all four subunits. Crystal structures of E. coli and P. falciparum SSB-ssDNA complexes show ssDNA bound with different backbone polarity orientations raising the question of whether these SSBs maintain strict backbone polarity in binding ssDNA. We show that both E. coli and P. falciparum SSBs can still form high affinity fully wrapped complexes with non-natural DNA containing internal reversals of the backbone polarity. These results suggest that both proteins maintain a strict backbone polarity preference, but adopt an alternate ssDNA wrapping topology.


Sign in / Sign up

Export Citation Format

Share Document