scholarly journals A new purification technique to obtain specific size distribution of giant lipid vesicles using dual filtration

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254930
Author(s):  
Mohammad Abu Sayem Karal ◽  
Tawfika Nasrin ◽  
Marzuk Ahmed ◽  
Md. Kabir Ahamed ◽  
Shareef Ahammed ◽  
...  

A new purification technique is developed for obtaining distribution of giant unilamellar vesicles (GUVs) within a specific range of sizes using dual filtration. The GUVs were prepared using well known natural swelling method. For filtration, different combinations of polycarbonate membranes were implemented in filter holders. In our experiment, the combinations of membranes were selected with corresponding pore sizes–(i) 12 and 10 μm, (ii) 12 and 8 μm, and (iii) 10 and 8 μm. By these filtration arrangements, obtained GUVs size distribution were in the ranges of 6−26 μm, 5–38 μm and 5–30 μm, respectively. In comparison, the size distribution range was much higher for single filtration technique, for example, 6−59 μm GUVs found for a membrane with 12 μm pores. Using this technique, the water-soluble fluorescent probe, calcein, can be removed from the suspension of GUVs successfully. The size distributions were analyzed with lognormal distribution. The skewness became smaller (narrow size distribution) when a dual filtration was used instead of single filtration. The mode of the size distribution obtained in dual filtration was also smaller to that of single filtration. By continuing this process of purification for a second time, the GUVs size distribution became even narrower. After using an extra filtration with dual filtration, two different size distributions of GUVs were obtained at a time. This experimental observation suggests that different size specific distributions of GUVs can be obtained easily, even if GUVs are prepared by different other methods.

2002 ◽  
Vol 759 ◽  
Author(s):  
Katherine S. Brantley ◽  
Melany L. Hunt ◽  
Christopher E. Brennen ◽  
Steven S. Gao

ABSTRACTMany sand dunes – at least seven in the United States – make loud booming noises when they avalanche. Records of the sound are centuries old, but the cause remains a mystery. This study examines properties of both the sand and the sound.Properties of the sand reveal clues about the source of the booming. Sand must be extremely dry to boom, but low moisture content alone is not sufficient to facilitate booming. Although the mean grain diameters of both booming and silent dune sands range from 0.20 – 0.40mm, the booming samples have smaller standard deviations. However, synthetic sands with similar size distributions do not boom, so a narrow size distribution cannot be solely responsible for the booming. Studies of the roundness and sphericity of the grains are currently underway.Air microphone and geophone recordings of the booming indicate that the fundamental frequency varies between 80–105 Hz depending on the dunes. This is consistent with previous measurements. Laboratory recordings of the “burping” sound that booming sand makes when shaken in a jar reveal a broad peak between 150–300 Hz.


2020 ◽  
Vol 77 (9) ◽  
pp. 3011-3031
Author(s):  
J. Shen ◽  
M. Yu ◽  
J. Lin

Abstract For nearly 60 years, the lognormal distribution has been the most widely used function in the field of atmospheric science for characterizing atmospheric aerosol size distribution. We verify whether the three-parameter inverse Gaussian distribution (IGD) is a more suitable function than the lognormal distribution for characterizing aerosol size distribution. An attractive feature of IGD is that with it a new method of moments (MOM) can be established for resolving atmospheric aerosol dynamics which is described by a kinetic aerosol dynamics equation, i.e., inverse Gaussian distributed MOM (IGDMOM). The advantage of IGDMOM is that all of its moments can be analytically calculated using a closure moment function inherited from IGD. The precision and efficiency of IGDMOM are verified by comparing it with other recognizable methods in test cases of four representative atmospheric aerosol dynamics. Several key statistical quantities determining aerosol size distributions, including kth moments (k = 0, 1/3, 2/3, and 2), geometric standard deviation, skewness, and kurtosis, are evaluated. IGDMOM has higher precision than the lognormal MOM with nearly identical efficiency. The article provides a novel alternative to atmospheric scientists for solving kinetic aerosol dynamics equations.


1993 ◽  
Vol 8 (5) ◽  
pp. 995-1000 ◽  
Author(s):  
F.H. Kaatz ◽  
G.M. Chow ◽  
A.S. Edelstein

By adjusting the sputtering rate and gas pressure, it is possible to form nanoparticles of different sizes, phases, and materials. We have investigated the spatial distribution of sputtered particle formation using a vertical, linear arrangement of substrates. Collecting the particles soon after they are formed, before they have time to grow and agglomerate, allows one to obtain a narrow size distribution. In the case of molybdenum, a narrow distribution of cubic particles is formed at relatively large distances (8 cm) from the source. These cubic particles collide and self-assemble in the vapor into arrays of larger cubic particles. The particle size histograms are fitted to lognormal distribution functions. How supersaturation occurs is discussed qualitatively as a function of the distance from the substrate, sputtering rate, and the mean free path in the vapor. This method of nanocrystalline particle formation has potential use in magnetic and opto-electronic (quantum dot) applications, where a narrow size distribution is required.


2014 ◽  
Vol 1675 ◽  
pp. 219-225
Author(s):  
Miguel Guerrero ◽  
Nguyet Trang Thanh Chau ◽  
Alain Roucoux ◽  
Audrey Nowicki-Denicourt ◽  
Eric Monflier ◽  
...  

ABSTRACTThe organometallic approach was successfully applied to synthesize water-soluble ruthenium nanoparticles displaying interesting catalytic properties in hydrogenation of unsaturated model-substrates. Nanocatalyst synthesis was performed by hydrogenation of the complex [Ru(COD)(COT)] in the presence of sulfonated diphosphines and cyclodextrins as protective agents providing very small ruthenium nanoparticles (ca. 1.2-1.5 nm) with narrow size distribution and high stability. Catalysis results in water evidenced a control of the surface properties of these novel ruthenium nanocatalysts at a supramolecular level.


2010 ◽  
Vol 7 (suppl_4) ◽  
Author(s):  
Heiko Schiffter ◽  
Jamie Condliffe ◽  
Sebastian Vonhoff

The feasibility of preparing microparticles with high insulin loading suitable for needle-free ballistic drug delivery by spray-freeze-drying (SFD) was examined in this study. The aim was to manufacture dense, robust particles with a diameter of around 50 µm, a narrow size distribution and a high content of insulin. Atomization using ultrasound atomizers showed improved handling of small liquid quantities as well as narrower droplet size distributions over conventional two-fluid nozzle atomization. Insulin nanoparticles were produced by SFD from solutions with a low solid content (<10 mg ml −1 ) and subsequent ultra-turrax homogenization. To prepare particles for needle-free ballistic injection, the insulin nanoparticles were suspended in matrix formulations with a high excipient content (>300 mg ml −1 ) consisting of trehalose, mannitol, dextran (10 kDa) and dextran (150 kDa) (abbreviated to TMDD) in order to maximize particle robustness and density after SFD. With the increase in insulin content, the viscosity of the nanosuspensions increased. Liquid atomization was possible up to a maximum of 250 mg of nano-insulin suspended in a 1.0 g matrix. However, if a narrow size distribution with a good correlation between theoretical and measurable insulin content was desired, no more than 150 mg nano-insulin could be suspended per gram of matrix formulation. Particles were examined by laser light diffraction, scanning electron microscopy and tap density testing. Insulin stability was assessed using size exclusion chromatography (SEC), reverse phase chromatography and Fourier transform infrared (FTIR) spectroscopy. Densification of the particles could be achieved during primary drying if the product temperature ( T prod ) exceeded the glass transition temperature of the freeze concentrate ( T g ′) of −29.4°C for TMDD (3∶3∶3∶1) formulations. Particles showed a collapsed and wrinkled morphology owing to viscous flow of the freeze concentrate. With increasing insulin loading, the d ( v , 0.5) of the SFD powders increased and particle size distributions got wider. Insulin showed a good stability during the particle formation process with a maximum decrease in insulin monomer of only 0.123 per cent after SFD. In accordance with the SEC data, FTIR analysis showed only a small increase in the intermolecular β-sheet of 0.4 per cent after SFD. The good physical stability of the polydisperse particles made them suitable for ballistic injection into tissue-mimicking agar hydrogels, showing a mean penetration depth of 251.3 ± 114.7 µm.


2008 ◽  
Vol 80 (3) ◽  
pp. 571-587 ◽  
Author(s):  
Andreas Hirsch

The supramolecular aggregation properties of new prototypes of artificial amphiphiles consisting of fullerene or calixarene building blocks serving as platforms for the connection of hydrophobic and dendritic hydrophilic groups are reported. Very water-soluble monoadducts of C60 carrying a defined number of negative charges at a given pH were hybridized with cationic porphyrins including cyctochrome C and investigated with respect to photoinduced electron transfer. Fullerene adducts with dendritic deprotected sugar addends self-assemble to supramolecular sugar balls in water with a narrow size distribution of the micelles of around 4 nm. Various examples of cone- or T-shaped amphiphiles involving calixarene and fullerene cores self-organize to the first examples of shape-persistent micelles whose supramolecular arrangement in water has been determined with unprecedented precision based on the analysis of cryo-transmission electron microscopy (TEM) investigations.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Hideharu Mori

This paper presents a short overview of recent advances in the design and synthesis of organic-inorganic hybrids using silsesquioxane-based nanoparticles having nanometer size, relatively narrow size distribution, high functionalities, and various characteristic features, mainly focusing on our recent researches related to the subject. A highlight of this paper is the water-soluble silsesquioxane-based nanoparticles, including hydroxyl-functionalized and cationic silsesquioxanes, which were synthesized via the one-step condensation of the bulky triethoxysilane precursors. The design and synthesis of R-SiO1.5/SiO2and R-SiO1.5/TiO2hybrids by hydrolytic cocondensation of a triethoxysilane precursor and metal alkoxides are briefly introduced. This paper also deals with recent results in stimuli-responsive hybrids based on the water-soluble silsesquioxane nanoparticles and fluorinated and amphiphilic silsesquioxane hybrids.


2021 ◽  
Vol 4 (3) ◽  
Author(s):  
Ummulkhair Abdulkarim ◽  
Bello Tijjani

Atmospheric aerosol concentrations have been found to change constantly due to the influence of source, winds and human activities over short time periods. This has proved to be a constraint to the study of varied aerosol concentrations in urban atmosphere alongside changing relative humidity and how it affects visibility and aerosol particle size distribution. In this research simulation was carried out using Optical Properties of Aerosols and Clouds (OPAC 4.0) average concentration setup for relative humidity (RH) 0-99% at visible wavelength 0.4-0.8 μm to vary the concentrations of three aerosol components: WASO (Water-soluble), INSO (Insoluble) and SOOT. The Angstrom exponents (α), the curvatures (α2) and atmospheric turbidities (β) were obtained from the regression analysis of Kaufman’s first and second order polynomial equations for visibility. The research determined the mean exponent of the aerosol size growth curve (µ) from the effective hygroscopic growth (geff) and the humidification factors (γ) from visibility enhancement f (RH, λ). The mean exponent of aerosol size distributions (υ) was determined from µ and γ. The results showed that with varied WASO, INSO and SOOT concentrations respectively at different RH, aerosol particle size distributions showed bimodal characteristics with dominance of fine mode particles. Hazy atmospheric conditions prevailed with increasing turbidity.


2006 ◽  
Vol 39 (4) ◽  
pp. 1607-1613 ◽  
Author(s):  
Toru Arai ◽  
Junya Ogawa ◽  
Emiko Mouri ◽  
Mohammed P. I. Bhuiyan ◽  
Norikazu Nishino

1984 ◽  
Vol 75 ◽  
pp. 607-613 ◽  
Author(s):  
Kevin D. Pang ◽  
Charles C. Voge ◽  
Jack W. Rhoads

Abstract.All observed optical and infrared properties of Saturn's E-ring can be explained in terms of Mie scattering by a narrow size distribution of ice spheres of 2 - 2.5 micron diameter. The spherical shape of the ring particles and their narrow size distribution imply a molten (possibly volcanic) origin on Enceladus. The E-ring consists of many layers, possibly stratified by electrostatic levitation.


Sign in / Sign up

Export Citation Format

Share Document