scholarly journals ESIDE: A computationally intelligent method to identify earthworm species (E. fetida) from digital images: Application in taxonomy

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255674
Author(s):  
Saiqa Andleeb ◽  
Wajid Arshad Abbasi ◽  
Rozina Ghulam Mustafa ◽  
Ghafoor ul Islam ◽  
Anum Naseer ◽  
...  

Earthworms (Crassiclitellata) being ecosystem engineers significantly affect the physical, chemical, and biological properties of the soil by recycling organic material, increasing nutrient availability, and improving soil structure. The efficiency of earthworms in ecology varies along with species. Therefore, the role of taxonomy in earthworm study is significant. The taxonomy of earthworms cannot reliably be established through morphological characteristics because the small and simple body plan of the earthworm does not have anatomical complex and highly specialized structures. Recently, molecular techniques have been adopted to accurately classify the earthworm species but these techniques are time-consuming and costly. To combat this issue, in this study, we propose a machine learning-based earthworm species identification model that uses digital images of earthworms. We performed a stringent performance evaluation not only through 10-fold cross-validation and on an external validation dataset but also in real settings by involving an experienced taxonomist. In all the evaluation settings, our proposed model has given state-of-the-art performance and justified its use to aid earthworm taxonomy studies. We made this model openly accessible through a cloud-based webserver and python code available at https://sites.google.com/view/wajidarshad/software and https://github.com/wajidarshad/ESIDE.

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1647
Author(s):  
Anna Kaczmarek ◽  
Małgorzata Muzolf-Panek

The aim of the study was to develop predictive models of thiol group (SH) level changes in minced raw and heat-treated chicken meat enriched with selected plant extracts (allspice, basil, bay leaf, black seed, cardamom, caraway, cloves, garlic, nutmeg, onion, oregano, rosemary, and thyme) during storage at different temperatures. Meat samples with extract addition were stored under various temperatures (4, 8, 12, 16, and 20 °C). SH changes were measured spectrophotometrically using Ellman’s reagent. Samples stored at 12 °C were used as the external validation dataset. SH content decreased with storage time and temperature. The dependence of SH changes on temperature was adequately modeled by the Arrhenius equation with average high R2 coefficients for raw meat (R2 = 0.951) and heat-treated meat (R2 = 0.968). Kinetic models and artificial neural networks (ANNs) were used to build the predictive models of thiol group decay during meat storage. The obtained results demonstrate that both kinetic Arrhenius (R2 = 0.853 and 0.872 for raw and cooked meat, respectively) and ANN (R2 = 0.803) models can predict thiol group changes in raw and cooked ground chicken meat during storage.


Author(s):  
Gabriella Vindigni ◽  
Alfredo Pulvirenti ◽  
Salvatore Alaimo ◽  
Clara Monaco ◽  
Daniela Spina ◽  
...  

Fisheries products are some of the most traded commodities world-wide and the potential for fraud is a serious concern. Fish fraud represents a threat to human health and poses serious concerns due to the consumption of toxins, highly allergenic species, contaminates or zoonotic parasites, which may be present in substituted fish. The substitution of more expensive fish by cheaper species, with similar morphological characteristics but different origins, reflects the need for greater transparency and traceability upon which which the security of the entire seafood value-chain depends. Even though EU regulations have made significant progress in consumer information by stringent labelling requirements, fraud is still widespread. Many molecular techniques such as DNA barcoding provide valuable support to enhance the Common Fisheries Policy (CFP) in the protection of consumer interests by unequivocally detecting any kind of fraud. This paper aims to highlight both the engagement of EU fishery policy and the opportunity offered by new biotechnology instruments to mitigate the growing fraud in the globalized fish market and to enforce the food security system to protect consumers’ health. In this paper, after a presentation of EU rules on fish labeling and a general overview on the current state of the global fish market, we discuss the public health implications and the opportunities offered by several techniques based on genetics, reporting a case study to show the efficacy of the DNA barcoding methodology in assessing fish traceability and identification, comparing different species of the Epinephelus genus, Mottled Grouper (Mycteroperca rubra) and Wreckfish (Polyprion americanus), often improperly sold with the commercial name of “grouper”.


2014 ◽  
Vol 21 (6) ◽  
pp. 891-902 ◽  
Author(s):  
Min-Hee Kim ◽  
Ja Seong Bae ◽  
Dong-Jun Lim ◽  
Hyoungnam Lee ◽  
So Ra Jeon ◽  
...  

The BRAF V600E mutation is the most common genetic alteration in thyroid cancer. However, its clinicopathological significance and clonal mutation frequency remain unclear. To clarify the inconsistent results, we investigated the association between the allelic frequency of BRAF V600E and the clinicopathological features of classic papillary thyroid carcinoma (PTC). Tumour tissues from two independent sets of patients with classic PTC were manually microdissected and analysed for the presence or absence of the BRAF mutation and the mutant allelic frequency using quantitative pyrosequencing. For external validation, the Cancer Genome Atlas (TCGA) data were analysed. The BRAF V600E mutation was found in 264 (82.2%) out of 321 classic PTCs in the training set. The presence of BRAF V600E was only associated with extrathyroidal extension and the absence of thyroiditis. In BRAF V600E-positive tumours, the mutant allelic frequency varied from 8 to 41% of the total BRAF alleles (median, 20%) and directly correlated with tumour size and the number of metastatic lymph nodes. Lymph node metastases were more frequent in PTCs with a high (≥20%) abundance of mutant alleles than in those with a low abundance of mutant alleles (P=0.010). These results were reinforced by validation dataset (n=348) analysis but were not reproduced in the TCGA dataset. In a population with prevalent BRAF mutations, quantitative analysis of the BRAF mutation could provide additional information regarding tumour behaviour, which is not reflected by qualitative analysis. Nonetheless, prospective studies are needed before the mutated allele percentage can be considered as a prognostic factor.


2020 ◽  
Author(s):  
Sunae Ryu ◽  
Woo Jin Jung ◽  
Zheng Jiao ◽  
Jung Woo Chae ◽  
Hwi-yeol Yun

Aim: Several studies have reported population pharmacokinetic models for phenobarbital (PB), but the predictive performance of these models has not been well documented. This study aims to do external validation of the predictive performance in published pharmacokinetic models. Methods: Therapeutic drug monitoring data collected in neonates and young infants treated with PB for seizure control, was used for external validation. A literature review was conducted through PubMed to identify population pharmacokinetic models. Prediction- and simulation-based diagnostics, and Bayesian forecasting were performed for external validation. The incorporation of size or maturity functions into the published models was also tested for prediction improvement. Results: A total of 79 serum concentrations from 28 subjects were included in the external validation dataset. Seven population pharmacokinetic studies of PB were selected for evaluation. The model by Voller et al. [27] showed the best performance concerning prediction-based evaluation. In simulation-based analyses, the normalized prediction distribution error of two models (those of Shellhaas et al. [24] and Marsot et al. [25]) obeyed a normal distribution. Bayesian forecasting with more than one observation improved predictive capability. Incorporation of both allometric size scaling and maturation function generally enhanced the predictive performance, but with marked improvement for the adult pharmacokinetic model. Conclusion: The predictive performance of published pharmacokinetic models of PB was diverse, and validation may be necessary to extrapolate to different clinical settings. Our findings suggest that Bayesian forecasting improves the predictive capability of individual concentrations for pediatrics.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan Luo ◽  
Zhiyu Wang ◽  
Cong Wang

Abstract Background Prognostication is an essential tool for risk adjustment and decision making in the intensive care units (ICUs). In order to improve patient outcomes, we have been trying to develop a more effective model than Acute Physiology and Chronic Health Evaluation (APACHE) II to measure the severity of the patients in ICUs. The aim of the present study was to provide a mortality prediction model for ICUs patients, and to assess its performance relative to prediction based on the APACHE II scoring system. Methods We used the Medical Information Mart for Intensive Care version III (MIMIC-III) database to build our model. After comparing the APACHE II with 6 typical machine learning (ML) methods, the best performing model was screened for external validation on anther independent dataset. Performance measures were calculated using cross-validation to avoid making biased assessments. The primary outcome was hospital mortality. Finally, we used TreeSHAP algorithm to explain the variable relationships in the extreme gradient boosting algorithm (XGBoost) model. Results We picked out 14 variables with 24,777 cases to form our basic data set. When the variables were the same as those contained in the APACHE II, the accuracy of XGBoost (accuracy: 0.858) was higher than that of APACHE II (accuracy: 0.742) and other algorithms. In addition, it exhibited better calibration properties than other methods, the result in the area under the ROC curve (AUC: 0.76). we then expand the variable set by adding five new variables to improve the performance of our model. The accuracy, precision, recall, F1, and AUC of the XGBoost model increased, and were still higher than other models (0.866, 0.853, 0.870, 0.845, and 0.81, respectively). On the external validation dataset, the AUC was 0.79 and calibration properties were good. Conclusions As compared to conventional severity scores APACHE II, our XGBoost proposal offers improved performance for predicting hospital mortality in ICUs patients. Furthermore, the TreeSHAP can help to enhance the understanding of our model by providing detailed insights into the impact of different features on the disease risk. In sum, our model could help clinicians determine prognosis and improve patient outcomes.


2019 ◽  
Author(s):  
Zied Hosni ◽  
Annalisa Riccardi ◽  
Stephanie Yerdelen ◽  
Alan R. G. Martin ◽  
Deborah Bowering ◽  
...  

<div><div><p>Polymorphism is the capacity of a molecule to adopt different conformations or molecular packing arrangements in the solid state. This is a key property to control during pharmaceutical manufacturing because it can impact a range of properties including stability and solubility. In this study, a novel approach based on machine learning classification methods is used to predict the likelihood for an organic compound to crystallise in multiple forms. A training dataset of drug-like molecules was curated from the Cambridge Structural Database (CSD) and filtered according to entries in the Drug Bank database. The number of separate forms in the CSD for each molecule was recorded. A metaclassifier was trained using this dataset to predict the expected number of crystalline forms from the compound descriptors. This approach was used to estimate the number of crystallographic forms for an external validation dataset. These results suggest this novel methodology can be used to predict the extent of polymorphism of new drugs or not-yet experimentally screened molecules. This promising method complements expensive ab initio methods for crystal structure prediction and as integral to experimental physical form screening, may identify systems that with unexplored potential.</p> </div> </div>


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 580
Author(s):  
Hongyi Liu ◽  
Yufeng Zhang ◽  
Wei Xu ◽  
Yu Fang ◽  
Honghua Ruan

Identification based on conventional morphological characteristics is typically difficult and time-consuming. The development of molecular techniques provides a novel strategy that relies on specific mitochondrial gene fragments to conduct authentication. For this study, five newly sequenced partial mitogenomes of earthworms (Bimastos parvus, Dendrobaena octaedra, Eisenia andrei, Eisenia nordenskioldi, and Octolasion tyrtaeum) with lengths ranging from 14,977 to 15,715 were presented. Each mitogenome possessed a putative control region that resided between tRNA-Arg and tRNA-His. All of the PCGs were under negative selection according to the value of Ka/Ks. The phylogenetic trees supported the classification of Eisenia and Lumbricus; however, the trees based on cox1 did not. Through various comparisons, it was determined that cox1 fragments might be more suitable for molecular identification. These results lay the foundation for further phylogenetic studies on Lumbricidae.


HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1266-1270 ◽  
Author(s):  
Nader R. Abdelsalam ◽  
Hayssam M. Ali ◽  
Mohamed Z.M. Salem ◽  
Elsayed G. Ibrahem ◽  
Mohamed S. Elshikh

Mango (Mangifera indica L.) is a fruit crops belong to the family Anacardiaceae and is the oldest cultivated tree worldwide. Cultivars maintained in Egypt have not been investigated previously. Mango was first brought to Egypt from South Asia. Morphological and molecular techniques were used to identify the genetic diversity within 28 mango cultivars. SSR and EST-SSR were used for optimizing germplasm management of mango cultivars. Significant variations were observed in morphological characteristics and genetic polymorphism, as they ranged from 0.71% to 100%. High diversity was confirmed as a pattern of morphological and genotypes data. Data from the present study may be used to calculate the mango relationship and diversity currently grown in Egypt.


Fisheries ◽  
2020 ◽  
Vol 2020 (5) ◽  
pp. 71-73
Author(s):  
Gazimagomed Magomedov ◽  
Zarema Alibekova ◽  
Rystam Rabazanov

A morphological analysis of brooks trout in Dagestan showed that each spawning herd is morphologically unique and differs from the rest in a certain set of characters. However, all of them, when comparing the age composition, spawning conditions, the extent of spawning migrations in rivers, etc. have a lot in common. All of them meet the definition of a population as a group of individuals united by panmixia, a single territory and isolated to one degree or another from similar groups within the species. The morphological characteristics of trout in the upper of rivers Avar, Andi, and Kara-Koysu further confirms the validity of this approach. Presumably, the structure of trout populations is in continuous change and the differences in morphological indicators are phenotypic in nature and reflect the biotic and abiotic conditions prevailing in this region. The interaction of variability and selection in the population maintains a mobile equilibrium of biological properties forms the passing (brown trout) and residential (trout) forms. The trout of Sulakriver breaks up into several local herds (trout of Avar Koysu, Andi Koysu, Kara-Koysu, etc.) with a specific and limited range of its migrations. To a certain extent, differing from neighboring ones, each of the herds maintains its integrity and does not mix with the rest. Thus, the brooks trout of Dagestan seem to combine two functions - the self-reproduction of local settled populations and generating migrant individuals in the Caspian trout (Terek, Samur, Kara-Su rivers, etc.). In the rivers of the Kara-Su system, regardless of the place of fishing and the season, trout is represented by almost 100% males. Naturally, the question arises: who ensures the reproduction of trout herds in the absence of females? At the same time, the Salmo truttacis caucasicus (Dorofeyeva, 1967) comes to spawn in these rivers, and its livestock is represented exclusively by females (70-80%). Therefore, brooks trout of the Kara-Su system rivers and the Salmo truttacis caucasicus, coming here to spawn, should be considered as a single reproduction fund. Eggs, laid by either a brown trout female or a trout female, can leave individuals, that roll into the sea and turn into a passing trout, and individuals that remain in the river will be called brooks trout. The total reproductive potential of small rivers of the Dagestan coast of the Caspian Sea is currently no less than in native salmon rivers (Terek, Samur). That is why small rivers play an important role in the natural reproduction of trout and brown trout. Among the small salmon rivers of Dagestan, the greatest fishery value have tributaries of the Sulak river, rivers of the Kara-Su system, Shura-ozen, Manas-ozen, etc. Significant differences in the climatic features of these areas inevitably affect the biology of trout inhabiting them.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1693
Author(s):  
Agnieszka Jamiołkowska ◽  
Barbara Skwaryło-Bednarz ◽  
Elżbieta Patkowska ◽  
Halina Buczkowska ◽  
Anna Gałązka ◽  
...  

The aim of the study was to evaluate the influence of mycorrhizal fungi (MF) and irrigation on biological properties of sweet pepper rhizosphere in organic field cultivation. For this purpose, MF were applied to plants in the form of commercial mycorrhizal inoculum (Rhizophagus aggregatus, R. intraradices, Claroideoglomus etunicatum, Endogone mosseae, Funneliformis caledonium, and Gigaspora margarita) and irrigation according to the combinations: mycorrhized plants (PM), mycorrhized and irrigated plants (PMI), and irrigated plants (PI). Plants without MF and irrigation served as the absolute control (P). The study used classic and molecular techniques, assessing catalase activity, biodiversity of soil microorganisms (soil DNA analysis), and the Community-Level Physiological Profiles (CLPP) analysis using Biolog EcoPlates. The highest catalase activity was recorded in the control and mycorrhized soil sample. The highest total number of bacteria was noted in the rhizosphere of control plants (P) and irrigated plants, while the lowest number in the rhizosphere of mycorrhized and irrigated plants. Plant irrigation contributed to the increase in the total number of fungi in the rhizosphere. The rhizospheric soil of PM and PMI were characterized by the highest utilization of amines, amides, and amino acids, whereas the lowest level of utilization was detected in the P and PI rhizospheres. The highest biodiversity and metabolic activity were observed in the rhizospheres from the PMI and PM samples, whereas lower catabolic activity were recorded in the P and PI rhizospheres. The mycorrhization of crops improved the biological properties of the rhizosphere, especially under conditions of drought stress.


Sign in / Sign up

Export Citation Format

Share Document