scholarly journals Correction: Significance of a histone-like protein with its native structure for the diagnosis of asymptomatic tuberculosis

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256946
Author(s):  
Yukiko Ohara ◽  
Yuriko Ozeki ◽  
Yoshitaka Tateishi ◽  
Tsukasa Mashima ◽  
Fumio Arisaka ◽  
...  
Keyword(s):  
Author(s):  
R.A. Milligan ◽  
P.N.T. Unwin

A detailed understanding of the mechanism of protein synthesis will ultimately depend on knowledge of the native structure of the ribosome. Towards this end we have investigated the low resolution structure of the eukaryotic ribosome embedded in frozen buffer, making use of a system in which the ribosomes crystallize naturally.The ribosomes in the cells of early chicken embryos form crystalline arrays when the embryos are cooled at 4°C. We have developed methods to isolate the stable unit of these arrays, the ribosome tetramer, and have determined conditions for the growth of two-dimensional crystals in vitro, Analysis of the proteins in the crystals by 2-D gel electrophoresis demonstrates the presence of all ribosomal proteins normally found in polysomes. There are in addition, four proteins which may facilitate crystallization. The crystals are built from two oppositely facing P4 layers and the predominant crystal form, accounting for >80% of the crystals, has the tetragonal space group P4212, X-ray diffraction of crystal pellets demonstrates that crystalline order extends to ~ 60Å.


2012 ◽  
Vol 28 (1) ◽  
pp. 15
Author(s):  
Feng YANG ◽  
Libin CAO ◽  
Xinqi GONG ◽  
Shan CHANG ◽  
Weizu CHEN ◽  
...  

2020 ◽  
Vol 32 (9) ◽  
pp. 605-611 ◽  
Author(s):  
Masayuki Kuraoka ◽  
Yu Adachi ◽  
Yoshimasa Takahashi

Abstract Influenza virus constantly acquires genetic mutations/reassortment in the major surface protein, hemagglutinin (HA), resulting in the generation of strains with antigenic variations. There are, however, HA epitopes that are conserved across influenza viruses and are targeted by broadly protective antibodies. A goal for the next-generation influenza vaccines is to stimulate B-cell responses against such conserved epitopes in order to provide broad protection against divergent influenza viruses. Broadly protective B cells, however, are not easily activated by HA antigens with native structure, because the virus has multiple strategies to escape from the humoral immune responses directed to the conserved epitopes. One such strategy is to hide the conserved epitopes from the B-cell surveillance by steric hindrance. Technical advancement in the analysis of the human B-cell antigen receptor (BCR) repertoire has dissected the BCRs to HA epitopes that are hidden in the native structure but are targeted by broadly protective antibodies. We describe here the characterization and function of broadly protective antibodies and strategies that enable B cells to seek these hidden epitopes, with potential implications for the development of universal influenza vaccines.


1982 ◽  
Vol 27 (3) ◽  
pp. 286-296 ◽  
Author(s):  
Donald G. Wallace ◽  
Phillip M. Schneider ◽  
Ann M. Meunier ◽  
John L. Lundblad

2015 ◽  
Vol 51 (55) ◽  
pp. 11015-11018 ◽  
Author(s):  
Yaoxin Li ◽  
Xiaoxian Zhang ◽  
John Myers ◽  
Nicholas L. Abbott ◽  
Zhan Chen

The “native” structure and orientation of a surface immobilized peptide was successfully controlled in air with a sugar layer. The robust peptide structure could also be retained at high temperatures.


2008 ◽  
Vol 74 (23) ◽  
pp. 7431-7433 ◽  
Author(s):  
Mónica Martínez-Alonso ◽  
Nuria González-Montalbán ◽  
Elena García-Fruitós ◽  
Antonio Villaverde

ABSTRACT We have observed that a soluble recombinant green fluorescent protein produced in Escherichia coli occurs in a wide conformational spectrum. This results in differently fluorescent protein fractions in which morphologically diverse soluble aggregates abound. Therefore, the functional quality of soluble versions of aggregation-prone recombinant proteins is defined statistically rather than by the prevalence of a canonical native structure.


1987 ◽  
Vol 21 (3) ◽  
pp. 195-200 ◽  
Author(s):  
M. Walter ◽  
U. Brenner ◽  
W. Holzmüller ◽  
J. M. Müller

A new preparation process was studied which should allow the implantation of collagen type I in its native structure in reconstructive surgery, in this special case for closure of incisional hernias. As experimental animals we used 30 female Lewis rats. A defect of the anterior abdominal wall measuring 3 cm × 4 cm was closed with our collagen substitute. Biopsies taken after 4, 6 and 8 weeks were examined morphologically. As criteria for revitalization and revascularization we used the type of infiltrating cells, the depth and density of infiltration and the formation of new blood vessels. After 4 weeks the implants were infiltrated by fibroblasts that decreased in density towards the centre. Good revascularization could be seen on the muscle-implant interface. After 6 weeks the density of infiltrating cells had increased markedly even to the centre of the collagen implant. Sporadically small vessels could be seen. Eight weeks after implantation the density of infiltrated cells was at the same high level, and capillary bundles could be seen within the whole implant. We believe that this collagen implant is suitable for the closure of hernias as shown by its physical and morphological properties. In particular it appears to guarantee an earlier and tighter closure of hernias than other materials.


Sign in / Sign up

Export Citation Format

Share Document