scholarly journals Structural analysis of the GPI glycan

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257435
Author(s):  
Miyako Nakano ◽  
Susana Sabido-Bozo ◽  
Kouta Okazaki ◽  
Auxiliadora Aguilera-Romero ◽  
Sofia Rodriguez-Gallardo ◽  
...  

Glycosylphosphatidylinositol (GPI) anchoring of proteins is an essential post-translational modification in all eukaryotes that occurs at the endoplasmic reticulum (ER) and serves to deliver GPI-anchored proteins (GPI-APs) to the cell surface where they play a wide variety of vital physiological roles. This paper describes a specialized method for purification and structural analysis of the GPI glycan of individual GPI-APs in yeast. The protocol involves the expression of a specific GPI-AP tagged with GFP, enzymatic release from the cellular membrane fraction, immunopurification, separation by electrophoresis and analysis of the peptides bearing GPI glycans by mass spectrometry after trypsin digestion. We used specifically this protocol to address the structural remodeling that undergoes the GPI glycan of a specific GPI-AP during its transport to the cell surface. This method can be also applied to investigate the GPI-AP biosynthetic pathway and to directly confirm predicted GPI-anchoring of individual proteins.

mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Wei Zhang ◽  
Teymur Kazakov ◽  
Andreea Popa ◽  
Daniel DiMaio

ABSTRACT The route taken by papillomaviruses from the cell surface to the nucleus during infection is incompletely understood. Here, we developed a novel human papillomavirus 16 (HPV16) pseudovirus in which the carboxy terminus of the minor capsid protein L2 is exposed on the exterior of the intact capsid prior to cell binding. With this pseudovirus, we used the proximity ligation assay immune detection technique to demonstrate that during entry HPV16 L2 traffics into and out of the early endosome prior to Golgi localization, and we demonstrated that L2 enters the endoplasmic reticulum during entry. The cellular membrane-associated protease, γ-secretase, is required for infection by HPV16 pseudovirus and authentic HPV16. We also showed that inhibition of γ-secretase does not interfere substantively with virus internalization, initiation of capsid disassembly, entry into the early endosome, or exit from this compartment, but γ-secretase is required for localization of L2 and viral DNA to the Golgi apparatus and the endoplasmic reticulum. These results show that incoming HPV16 traffics sequentially from the cell surface to the endosome and then to the Golgi apparatus and the endoplasmic reticulum prior to nuclear entry. IMPORTANCE The human papillomaviruses are small nonenveloped DNA viruses responsible for approximately 5% of all human cancer deaths, but little is known about the process by which these viruses transit from the cell surface to the nucleus. Here we show that incoming HPV16, the most common high-risk HPV, traffics though a series of vesicular compartments during infectious entry, including the endosome, Golgi apparatus, and endoplasmic reticulum. Furthermore, we show that γ-secretase, a cellular membrane-associated protease, is required for entry of the L2 minor capsid protein and viral DNA into the Golgi apparatus and endoplasmic reticulum. These studies reveal a new pathway of cell entry by DNA viruses and suggest that components of this pathway are candidate antiviral targets.


2006 ◽  
Vol 188 (12) ◽  
pp. 4244-4252 ◽  
Author(s):  
Joseph Horzempa ◽  
Charles R. Dean ◽  
Joanna B. Goldberg ◽  
Peter Castric

ABSTRACT The pilin of Pseudomonas aeruginosa 1244 is glycosylated with an oligosaccharide that is structurally identical to the O-antigen repeating unit of this organism. Concordantly, the metabolic source of the pilin glycan is the O-antigen biosynthetic pathway. The present study was conducted to investigate glycan substrate recognition in the 1244 pilin glycosylation reaction. Comparative structural analysis of O subunits that had been previously shown to be compatible with the 1244 glycosylation machinery revealed similarities among sugars at the presumed reducing termini of these oligosaccharides. We therefore hypothesized that the glycosylation substrate was within the sugar at the reducing end of the glycan precursor. Since much is known of PA103 O-antigen genetics and because the sugars at the reducing termini of the O7 (strain 1244) and O11 (strain PA103) are identical (β-N-acetyl fucosamine), we utilized PA103 and strains that express lipopolysaccharide (LPS) with a truncated O-antigen subunit to test our hypothesis. LPS from a strain mutated in the wbjE gene produced an incomplete O subunit, consisting only of the monosaccharide at the reducing end (β-d-N-acetyl fucosamine), indicating that this moiety contained substrate recognition elements for WaaL. Expression of pilAO 1244 in PA103 wbjE::aacC1, followed by Western blotting of extracts of these cells, indicated that pilin produced has been modified by the addition of material consistent with a single N-acetyl fucosamine. This was confirmed by analyzing endopeptidase-treated pilin by mass spectrometry. These data suggest that the pilin glycosylation substrate recognition features lie within the reducing-end moiety of the O repeat and that structures of the remaining sugars are irrelevant.


2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


2020 ◽  
Author(s):  
Ian Sims ◽  
CJ Pollock ◽  
R Horgan

Individual fructan tri-, tetra- and pentasaccharide isomers in neutral, water-soluble extracts from Lolium temulentum were purified and the linkages present in these isomeric oligosaccharides were analysed by combined GC-mass spectrometry of partially methylated alditol acetates. 1-Kestose and neokestose were the most abundant trisaccharides with 6-kestose present in much lower amounts. Analysis of isomers of DP 4 and 5 showed that multiple linkage types were present with structures based on all three trisaccharides. Oligosaccharides based on neokestose but with 2,6 linkages between adjacent fructose residues have not been previously detected in higher plants. © 1992.


1990 ◽  
Vol 64 (10) ◽  
pp. 4776-4783 ◽  
Author(s):  
M E Andrew ◽  
D B Boyle ◽  
P L Whitfeld ◽  
L J Lockett ◽  
I D Anthony ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4699
Author(s):  
Mubashir Mintoo ◽  
Amritangshu Chakravarty ◽  
Ronak Tilvawala

Proteases play a central role in various biochemical pathways catalyzing and regulating key biological events. Proteases catalyze an irreversible post-translational modification called proteolysis by hydrolyzing peptide bonds in proteins. Given the destructive potential of proteolysis, protease activity is tightly regulated. Dysregulation of protease activity has been reported in numerous disease conditions, including cancers, neurodegenerative diseases, inflammatory conditions, cardiovascular diseases, and viral infections. The proteolytic profile of a cell, tissue, or organ is governed by protease activation, activity, and substrate specificity. Thus, identifying protease substrates and proteolytic events under physiological conditions can provide crucial information about how the change in protease regulation can alter the cellular proteolytic landscape. In recent years, mass spectrometry-based techniques called N-terminomics have become instrumental in identifying protease substrates from complex biological mixtures. N-terminomics employs the labeling and enrichment of native and neo-N-termini peptides, generated upon proteolysis followed by mass spectrometry analysis allowing protease substrate profiling directly from biological samples. In this review, we provide a brief overview of N-terminomics techniques, focusing on their strengths, weaknesses, limitations, and providing specific examples where they were successfully employed to identify protease substrates in vivo and under physiological conditions. In addition, we explore the current trends in the protease field and the potential for future developments.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 468
Author(s):  
Anthony E. Jones ◽  
Nataly J. Arias ◽  
Aracely Acevedo ◽  
Srinivasa T. Reddy ◽  
Ajit S. Divakaruni ◽  
...  

Coenzyme A (CoA) is an essential cofactor for dozens of reactions in intermediary metabolism. Dysregulation of CoA synthesis or acyl CoA metabolism can result in metabolic or neurodegenerative disease. Although several methods use liquid chromatography coupled with mass spectrometry/mass spectrometry (LC-MS/MS) to quantify acyl CoA levels in biological samples, few allow for simultaneous measurement of intermediates in the CoA biosynthetic pathway. Here we describe a simple sample preparation and LC-MS/MS method that can measure both short-chain acyl CoAs and biosynthetic precursors of CoA. The method does not require use of a solid phase extraction column during sample preparation and exhibits high sensitivity, precision, and accuracy. It reproduces expected changes from known effectors of cellular CoA homeostasis and helps clarify the mechanism by which excess concentrations of etomoxir reduce intracellular CoA levels.


Sign in / Sign up

Export Citation Format

Share Document