scholarly journals Artificial intelligence on COVID-19 pneumonia detection using chest xray images

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257884
Author(s):  
Lei Rigi Baltazar ◽  
Mojhune Gabriel Manzanillo ◽  
Joverlyn Gaudillo ◽  
Ethel Dominique Viray ◽  
Mario Domingo ◽  
...  

Recent studies show the potential of artificial intelligence (AI) as a screening tool to detect COVID-19 pneumonia based on chest x-ray (CXR) images. However, issues on the datasets and study designs from medical and technical perspectives, as well as questions on the vulnerability and robustness of AI algorithms have emerged. In this study, we address these issues with a more realistic development of AI-driven COVID-19 pneumonia detection models by generating our own data through a retrospective clinical study to augment the dataset aggregated from external sources. We optimized five deep learning architectures, implemented development strategies by manipulating data distribution to quantitatively compare study designs, and introduced several detection scenarios to evaluate the robustness and diagnostic performance of the models. At the current level of data availability, the performance of the detection model depends on the hyperparameter tuning and has less dependency on the quantity of data. InceptionV3 attained the highest performance in distinguishing pneumonia from normal CXR in two-class detection scenario with sensitivity (Sn), specificity (Sp), and positive predictive value (PPV) of 96%. The models attained higher general performance of 91-96% Sn, 94-98% Sp, and 90-96% PPV in three-class compared to four-class detection scenario. InceptionV3 has the highest general performance with accuracy, F1-score, and g-mean of 96% in the three-class detection scenario. For COVID-19 pneumonia detection, InceptionV3 attained the highest performance with 86% Sn, 99% Sp, and 91% PPV with an AUC of 0.99 in distinguishing pneumonia from normal CXR. Its capability of differentiating COVID-19 pneumonia from normal and non-COVID-19 pneumonia attained 0.98 AUC and a micro-average of 0.99 for other classes.

2020 ◽  
Vol 112 (5) ◽  
pp. S50
Author(s):  
Zachary Eller ◽  
Michelle Chen ◽  
Jermaine Heath ◽  
Uzma Hussain ◽  
Thomas Obisean ◽  
...  

Measurement ◽  
2021 ◽  
pp. 109953
Author(s):  
Adhiyaman Manickam ◽  
Jianmin Jiang ◽  
Yu Zhou ◽  
Abhinav Sagar ◽  
Rajkumar Soundrapandiyan ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 411-424 ◽  
Author(s):  
José Daniel López-Cabrera ◽  
Rubén Orozco-Morales ◽  
Jorge Armando Portal-Diaz ◽  
Orlando Lovelle-Enríquez ◽  
Marlén Pérez-Díaz

2021 ◽  
Author(s):  
Ali Mohammad Alqudah ◽  
Shoroq Qazan ◽  
Ihssan S. Masad

Abstract BackgroundChest diseases are serious health problems that threaten the lives of people. The early and accurate diagnosis of such diseases is very crucial in the success of their treatment and cure. Pneumonia is one of the most widely occurred chest diseases responsible for a high percentage of deaths especially among children. So, detection and classification of pneumonia using the non-invasive chest x-ray imaging would have a great advantage of reducing the mortality rates.ResultsThe results showed that the best input image size in this framework was 64 64 based on comparison between different sizes. Using CNN as a deep features extractor and utilizing the 10-fold methodology the propose artificial intelligence framework achieved an accuracy of 94% for SVM and 93.9% for KNN, a sensitivity of 93.33% for SVM and 93.19% for KNN and a specificity of 96.68% for SVM and 96.60% for KNN.ConclusionsIn this study, an artificial intelligence framework has been proposed for the detection and classification of pneumonia based on chest x-ray imaging with different sizes of input images. The proposed methodology used CNN for features extraction that were fed to two different types of classifiers, namely, SVM and KNN; in addition to the SoftMax classifier which is the default CNN classifier. The proposed CNN has been trained, validated, and tested using a large dataset of chest x-ray images contains in total 5852 images.


Author(s):  
José Daniel López-Cabrera ◽  
Rubén Orozco-Morales ◽  
Jorge Armando Portal-Díaz ◽  
Orlando Lovelle-Enríquez ◽  
Marlén Pérez-Díaz

Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2206
Author(s):  
Dana Li ◽  
Lea Marie Pehrson ◽  
Carsten Ammitzbøl Lauridsen ◽  
Lea Tøttrup ◽  
Marco Fraccaro ◽  
...  

Our systematic review investigated the additional effect of artificial intelligence-based devices on human observers when diagnosing and/or detecting thoracic pathologies using different diagnostic imaging modalities, such as chest X-ray and CT. Peer-reviewed, original research articles from EMBASE, PubMed, Cochrane library, SCOPUS, and Web of Science were retrieved. Included articles were published within the last 20 years and used a device based on artificial intelligence (AI) technology to detect or diagnose pulmonary findings. The AI-based device had to be used in an observer test where the performance of human observers with and without addition of the device was measured as sensitivity, specificity, accuracy, AUC, or time spent on image reading. A total of 38 studies were included for final assessment. The quality assessment tool for diagnostic accuracy studies (QUADAS-2) was used for bias assessment. The average sensitivity increased from 67.8% to 74.6%; specificity from 82.2% to 85.4%; accuracy from 75.4% to 81.7%; and Area Under the ROC Curve (AUC) from 0.75 to 0.80. Generally, a faster reading time was reported when radiologists were aided by AI-based devices. Our systematic review showed that performance generally improved for the physicians when assisted by AI-based devices compared to unaided interpretation.


Sign in / Sign up

Export Citation Format

Share Document