scholarly journals Heterologous expression and purification of recombinant human protoporphyrinogen oxidase IX: A comparative study

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259837
Author(s):  
Zora Novakova ◽  
Daria Khuntsaria ◽  
Marketa Gresova ◽  
Jana Mikesova ◽  
Barbora Havlinova ◽  
...  

Human protoporphyrinogen oxidase IX (hPPO) is an oxygen-dependent enzyme catalyzing the penultimate step in the heme biosynthesis pathway. Mutations in the enzyme are linked to variegate porphyria, an autosomal dominant metabolic disease. Here we investigated eukaryotic cells as alternative systems for heterologous expression of hPPO, as the use of a traditional bacterial-based system failed to produce several clinically relevant hPPO variants. Using bacterially-produced hPPO, we first analyzed the impact of N-terminal tags and various detergent on hPPO yield, and specific activity. Next, the established protocol was used to compare hPPO constructs heterologously expressed in mammalian HEK293T17 and insect Hi5 cells with prokaryotic overexpression. By attaching various fusion partners at the N- and C-termini of hPPO we also evaluated the influence of the size and positioning of fusion partners on expression levels, specific activity, and intracellular targeting of hPPO fusions in mammalian cells. Overall, our results suggest that while enzymatically active hPPO can be heterologously produced in eukaryotic systems, the limited availability of the intracellular FAD co-factor likely negatively influences yields of a correctly folded protein making thus the E.coli a system of choice for recombinant hPPO overproduction. At the same time, PPO overexpression in eukaryotic cells might be preferrable in cases when the effects of post-translational modifications (absent in bacteria) on target protein functions are studied.

2017 ◽  
Author(s):  
Li Cheng ◽  
Cheng-xi Liu ◽  
Shuang-ying Jiang ◽  
Sha Hou ◽  
Jin-guo Huang ◽  
...  

SUMMARYProtein, as the major executer for cell progresses and functions, its abundance and the level of post-translational modifications, are tightly monitored by regulators. Genetic perturbation could help us to understand the relationships between genes and protein functions. Herein, we developed a cell lysate microarray on kilo-conditions (CLICK) from 4,837 yeast knockout (YKO) strains and 322 temperature-sensitive mutant strains to explore the impact of the genome-wide interruption on certain protein. Taking histone marks as examples, a general workflow was established for the global identification of upstream regulators. Through a single CLICK array test, we obtained a series of regulators for H3K4me3 which covers most of the known regulators in Saccharomyces cerevisiae. We also noted that several group of proteins that are linked to negatively regulation of H3K4me3. Further, we discovered that Cab4p and Cab5p, two key enzymes of CoA biosynthesis, play central roles in histone acylation. Because of its general applicability, CLICK array could be easily adopted to rapid and global identification of upstream protein/enzyme(s) that regulate/modify the level of a protein or the posttranslational modification of a non-histone protein.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 818
Author(s):  
John Spencer Evans

Post-translational modifications are one way that biomineral-associated cells control the function and fate of proteins. Of the ten different types of post-translational modifications, one of the most interesting and complex is glycosylation, or the covalent attachment of carbohydrates to amino acid sidechains Asn, Ser, and Thr of proteins. In this review the author surveys some of the known biomineral-associated glycoproteins and summarizes recent in vitro recombinant protein experiments which test the impact of glycosylation on biomineralization protein functions, such as nucleation, crystal growth, and matrix assembly. These in vitro studies show that glycosylation does not alter the inherent function of the polypeptide chain; rather, it either accentuates or attenuates functionality. In essence, glycosylation gives the cell the “last word” as to what degree a biomineralization protein will participate in the biomineralization process.


2020 ◽  
Author(s):  
Despoina Kerselidou ◽  
Bushra Saeed Dohai ◽  
David R. Nelson ◽  
Sarah Daakour ◽  
Nicolas De Cock ◽  
...  

SUMMARYThe endoplasmic reticulum (ER) is a central eukaryotic organelle with a tubular network made of hairpin proteins linked by hydrolysis of GTP nucleotides. Among post-translational modifications initiated at the ER level, glycosylation is the most common reaction. However, our understanding of the impact of glycosylation on ER structure remains unclear. Here, we show that Exostosin-1 (EXT1) glycosyltransferase, an enzyme involved in N-glycosylation, is a key regulator of ER morphology and dynamics. We have integrated multi-omics data and super-resolution imaging to characterize the broad effect of EXT1 inactivation, including ER shape-dynamics-function relationships in mammalian cells. We have observed that, inactivating EXT1 induces cell enlargement and enhances metabolic switches such as protein secretion. In particular, suppressing EXT1 in mouse thymocytes causes developmental dysfunctions associated to ER network extension. Our findings suggest that EXT1 drives glycosylation reactions involving ER structural proteins and high-energy nucleotide sugars, which might also apply to other organelles.


2021 ◽  
Author(s):  
Angelica Severino ◽  
Alessandro Coppola ◽  
Monica Correggia ◽  
Costantino Vetriani ◽  
Donato Giovannelli ◽  
...  

Heterologous expression is an easy and broadly applicable experimental approach widely used to investigate protein functions without the need to genetically manipulate the original host. The approach is used to obtain large quantities of the desired protein, which can be further analyzed from a biochemical, structural and functional perspective. The expression system consists of three main components: i) a foreign DNA sequence coding for the protein of interest; ii) a suitable expression vector; iii) a suitable host (bacterial, yeast or mammalian cells) which does not encode or express the protein of interest. Here we show how to apply an Escherichia coli-based expression system to overexpress protein encoding genes from marinemicrobes.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1072
Author(s):  
Raquel Cid ◽  
Jorge Bolívar

To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1497
Author(s):  
Pansong Zhang ◽  
Qiao Guo ◽  
Zhihua Wei ◽  
Qin Yang ◽  
Zisheng Guo ◽  
...  

Therapeutics that target the virulence of pathogens rather than their viability offer a promising alternative for treating infectious diseases and circumventing antibiotic resistance. In this study, we searched for anti-virulence compounds against Pseudomonas aeruginosa from Chinese herbs and investigated baicalin from Scutellariae radix as such an active anti-virulence compound. The effect of baicalin on a range of important virulence factors in P. aeruginosa was assessed using luxCDABE-based reporters and by phenotypical assays. The molecular mechanism of the virulence inhibition by baicalin was investigated using genetic approaches. The impact of baicalin on P. aeruginosa pathogenicity was evaluated by both in vitro assays and in vivo animal models. The results show that baicalin diminished a plenty of important virulence factors in P. aeruginosa, including the Type III secretion system (T3SS). Baicalin treatment reduced the cellular toxicity of P. aeruginosa on the mammalian cells and attenuated in vivo pathogenicity in a Drosophila melanogaster infection model. In a rat pulmonary infection model, baicalin significantly reduced the severity of lung pathology and accelerated lung bacterial clearance. The PqsR of the Pseudomonas quinolone signal (PQS) system was found to be required for baicalin’s impact on T3SS. These findings indicate that baicalin is a promising therapeutic candidate for treating P. aeruginosa infections.


2021 ◽  
Vol 22 (6) ◽  
pp. 2941
Author(s):  
Marisa Pereira ◽  
Diana R. Ribeiro ◽  
Miguel M. Pinheiro ◽  
Margarida Ferreira ◽  
Stefanie Kellner ◽  
...  

Transfer RNA (tRNA) molecules contain various post-transcriptional modifications that are crucial for tRNA stability, translation efficiency, and fidelity. Besides their canonical roles in translation, tRNAs also originate tRNA-derived small RNAs (tsRNAs), a class of small non-coding RNAs with regulatory functions ranging from translation regulation to gene expression control and cellular stress response. Recent evidence indicates that tsRNAs are also modified, however, the impact of tRNA epitranscriptome deregulation on tsRNAs generation is only now beginning to be uncovered. The 5-methyluridine (m5U) modification at position 54 of cytosolic tRNAs is one of the most common and conserved tRNA modifications among species. The tRNA methyltransferase TRMT2A catalyzes this modification, but its biological role remains mostly unexplored. Here, we show that TRMT2A knockdown in human cells induces m5U54 tRNA hypomodification and tsRNA formation. More specifically, m5U54 hypomodification is followed by overexpression of the ribonuclease angiogenin (ANG) that cleaves tRNAs near the anticodon, resulting in accumulation of 5′tRNA-derived stress-induced RNAs (5′tiRNAs), namely 5′tiRNA-GlyGCC and 5′tiRNA-GluCTC, among others. Additionally, transcriptomic analysis confirms that down-regulation of TRMT2A and consequently m5U54 hypomodification impacts the cellular stress response and RNA stability, which is often correlated with tiRNA generation. Accordingly, exposure to oxidative stress conditions induces TRMT2A down-regulation and tiRNA formation in mammalian cells. These results establish a link between tRNA hypomethylation and ANG-dependent tsRNAs formation and unravel m5U54 as a tRNA cleavage protective mark.


Author(s):  
Shweta Kishor Sonawane ◽  
Subashchandrabose Chinnathambi

AbstractBackgroundAlzheimer’s disease is a type of dementia denoted by progressive neuronal death due to the accumulation of proteinaceous aggregates of Tau. Post-translational modifications like hyperphosphorylation, truncation, glycation, etc. play a pivotal role in Tau pathogenesis. Glycation of Tau aids in paired helical filament formation and abates its microtubule-binding function. The chemical modulators of Tau PTMs, such as kinase inhibitors and antibody-based therapeutics, have been developed, but natural compounds, as modulators of Tau PTMs are not much explored.MethodsWe applied biophysical and biophysical techniques like fluorescence kinetics, SDS-PAGE, western blot analysis and transmission electron microscopy to investigate the impact of EGCG on Tau glycation in vitro. The effect of glycation on cytoskeleton instability and its EGCG-mediated rescue were studied by immunofluorescence in neuroblastoma cells.ResultsEGCG inhibited methyl glyoxal (MG)-induced Tau glycation in vitro. EGCG potently inhibited MG-induced advanced glycation endproducts formation in neuroblastoma cells as well modulated the localization of AT100 phosphorylated Tau in the cells. In addition to preventing the glycation, EGCG enhanced actin-rich neuritic extensions and rescued actin and tubulin cytoskeleton severely disrupted by MG. EGCG maintained the integrity of the Microtubule Organizing Center (MTOC) stabilized microtubules by Microtubule-associated protein RP/EB family member 1 (EB1).ConclusionsWe report EGCG, a green tea polyphenol, as a modulator of in vitro methylglyoxal-induced Tau glycation and its impact on reducing advanced glycation end products in neuroblastoma cells. We unravel unprecedented function of EGCG in remodeling neuronal cytoskeletal integrity.


2019 ◽  
Author(s):  
Federico Comoglio ◽  
Marta Simonatto ◽  
Sara Polletti ◽  
Xin Liu ◽  
Stephen T. Smale ◽  
...  

ABSTRACTAccessibility of the genomic regulatory information is largely controlled by the nucleosome-organizing activity of transcription factors (TFs). Whereas stimulus-induced TFs bind to genomic regions that are maintained accessible by lineage-determining TFs, they also increase accessibility of thousands of cis-regulatory elements. Nucleosome remodeling events underlying such changes and their interplay with basal positioning are unknown. Here, we devised a novel quantitative framework discriminating different types of nucleosome remodeling events in micrococcal nuclease ChIP-seq datasets and used it to analyze nucleosome dynamics at stimulus-regulated cis-regulatory elements. At enhancers, remodeling preferentially affected poorly positioned nucleosomes while sparing well-positioned nucleosomes flanking the enhancer core, indicating that inducible TFs do not suffice to overrule basal nucleosomal organization maintained by lineage-determining TFs. Remodeling events appeared to be combinatorially driven by multiple TFs, with distinct TFs showing however different remodeling efficiencies. Overall, these data provide a systematic view of the impact of stimulation on nucleosome organization and genome accessibility in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document