scholarly journals Advancing the representation of reservoir hydropower in energy systems modelling: The case of Zambesi River Basin

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259876
Author(s):  
Nicolò Stevanato ◽  
Matteo V. Rocco ◽  
Matteo Giuliani ◽  
Andrea Castelletti ◽  
Emanuela Colombo

In state-of-the-art energy systems modelling, reservoir hydropower is represented as any other thermal power plant: energy production is constrained by the plant’s installed capacity and a capacity factor calibrated on the energy produced in previous years. Natural water resource variability across different temporal scales and the subsequent filtering effect of water storage mass balances are not accounted for, leading to biased optimal power dispatch strategies. In this work, we aim at introducing a novelty in the field by advancing the representation of reservoir hydropower generation in energy systems modelling by explicitly including the most relevant hydrological constraints, such as time-dependent water availability, hydraulic head, evaporation losses, and cascade releases. This advanced characterization is implemented in an open-source energy modelling framework. The improved model is then demonstrated on the Zambezi River Basin in the South Africa Power Pool. The basin has an estimated hydropower potential of 20,000 megawatts (MW) of which about 5,000 MW has been already developed. Results show a better alignment of electricity production with observed data, with a reduction of estimated hydropower production up to 35% with respect to the baseline Calliope implementation. These improvements are useful to support hydropower management and planning capacity expansion in countries richly endowed with water resource or that are already strongly relying on hydropower for electricity production.

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3388 ◽  
Author(s):  
Niina Helistö ◽  
Juha Kiviluoma ◽  
Jussi Ikäheimo ◽  
Topi Rasku ◽  
Erkka Rinne ◽  
...  

Backbone represents a highly adaptable energy systems modelling framework, which can be utilised to create models for studying the design and operation of energy systems, both from investment planning and scheduling perspectives. It includes a wide range of features and constraints, such as stochastic parameters, multiple reserve products, energy storage units, controlled and uncontrolled energy transfers, and, most significantly, multiple energy sectors. The formulation is based on mixed-integer programming and takes into account unit commitment decisions for power plants and other energy conversion facilities. Both high-level large-scale systems and fully detailed smaller-scale systems can be appropriately modelled. The framework has been implemented as the open-source Backbone modelling tool using General Algebraic Modeling System (GAMS). An application of the framework is demonstrated using a power system example, and Backbone is shown to produce results comparable to a commercial tool. However, the adaptability of Backbone further enables the creation and solution of energy systems models relatively easily for many different purposes and thus it improves on the available methodologies.


Author(s):  
Rodric M. Nonki ◽  
André Lenouo ◽  
Clément Tchawoua ◽  
Christopher J. Lennard ◽  
Ernest Amoussou

Abstract. Nowadays, special attention is paid to hydroelectric production because it is an efficient, reliable, and renewable source of energy, especially in developing countries like Cameroon, where hydropower potential is the main source of electricity production. It also represents a useful tool to reduce the atmospheric greenhouse gas concentrations caused by human activities. However, it is the most sensitive industry to global warming, mainly because climate change will directly affect the quality, quantity of water resources (streamflow and runoff), which are the important drivers of hydropower potential. This study examined the response of hydropower potential to climate change on the Lagdo dam located in the Benue River Basin, Northern Cameroon. Hydropower potential was computed based on streamflow simulated using HBV-Light hydrological model with dynamically downscaled temperature and precipitation from the regional climate model REMO. These data were obtained using the boundary conditions of two general circulation models (GCMs): the Europe-wide Consortium Earth System Model (EC-Earth) and the Max Planck Institute-Earth System Model (MPI-ESM) under three Representative Concentrations Pathways (RCP2.6, RCP4.5 and RCP8.5). The results suggest that, the combination of decreased precipitation and streamflow, increased PET will negatively impact the hydropower potential in the Lagdo dam under climate change scenarios, models and future periods.


1982 ◽  
Vol 14 (4-5) ◽  
pp. 245-252 ◽  
Author(s):  
C S Sinnott ◽  
D G Jamieson

The combination of increasing nitrate concentrations in the River Thames and the recent EEC Directive on the acceptable level in potable water is posing a potential problem. In assessing the impact of nitrates on water-resource systems, extensive use has been made of time-series analysis and simulation. These techniques are being used to define the optimal mix of alternatives for overcoming the problem on a regional basis.


2020 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
Wesam H. Beitelmal ◽  
Paul C. Okonkwo ◽  
Fadhil Al Housni ◽  
Wael Alruqi ◽  
Omar Alruwaythi

Diesel generators are being used as a source of electricity in different parts of the world. Because of the significant expense in diesels cost and the requirement for a greener domain, such electric generating systems appear not to be efficient and environmentally friendly and should be tended to. This paper explores the attainability of utilizing a sustainable power source based on a cross-breed electric system in the cement factory in Salalah, Oman. The HOMER software that breaks down the system setup was utilized to examine the application and functional limitations of each hybridized plan. The result showed that a renewable-energy (RE)-based system has a lower cost of energy (COE) and net present cost (NPC) compared to diesel generator-based hybrid electric and standalone systems. Although the two pure renewable hybrid energy systems considered in this study displayed evidence of no emissions, lower NPC and COE values are observed in the photovoltaic/battery (PV/B) hybrid energy system compared with photovoltaic/wind turbine/battery (PV/WT/B). The PV/WT/B and PV/B systems have higher electricity production and low NPC and COE values. Moreover, the PV/B has the highest return on investment (ROI) and internal rate of return (IRR), making the system the most economically viable and adjudged to be a better candidate for rural community electrification demands.


2022 ◽  
Vol 305 ◽  
pp. 114394
Author(s):  
Peng Yang ◽  
Shengqing Zhang ◽  
Jun Xia ◽  
Yaning Chen ◽  
Yongyong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document