scholarly journals A rare CTSC mutation in Papillon-Lefèvre Syndrome results in abolished serine protease activity and reduced NET formation but otherwise normal neutrophil function

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261724
Author(s):  
Felix P. Sanchez Klose ◽  
Halla Björnsdottir ◽  
Agnes Dahlstrand Rudin ◽  
Tishana Persson ◽  
Arsham Khamzeh ◽  
...  

Papillon-Lefèvre Syndrome (PLS) is an autosomal recessive monogenic disease caused by loss-of-function mutations in the CTSC gene, thus preventing the synthesis of the protease Cathepsin C (CTSC) in a proteolytically active form. CTSC is responsible for the activation of the pro-forms of the neutrophil serine proteases (NSPs; Elastase, Proteinase 3 and Cathepsin G), suggesting its involvement in a variety of neutrophil functions. In PLS neutrophils, the lack of CTSC protease activity leads to inactivity of the NSPs. Clinically, PLS is characterized by an early, typically pre-pubertal, onset of severe periodontal pathology and palmoplantar hyperkeratosis. However, PLS is not considered an immune deficiency as patients do not typically suffer from recurrent and severe (bacterial and fungal) infections. In this study we investigated an unusual CTSC mutation in two siblings with PLS, a 503A>G substitution in exon 4 of the CTSC gene, expected to result in an amino acid replacement from tyrosine to cysteine at position 168 of the CTSC protein. Both patients bearing this mutation presented with pronounced periodontal pathology. The characteristics and functions of neutrophils from patients homozygous for the 503A>G CTSC mutation were compared to another previously described PLS mutation (755A>T), and a small cohort of healthy volunteers. Neutrophil lysates from patients with the 503A>G substitution lacked CTSC protein and did not display any CTSC or NSP activity, yet neutrophil counts, morphology, priming, chemotaxis, radical production, and regulation of apoptosis were without any overt signs of alteration. However, NET formation upon PMA-stimulation was found to be severely depressed, but not abolished, in PLS neutrophils.

Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4885-4894 ◽  
Author(s):  
Ke Zen ◽  
Ya-Lan Guo ◽  
Li-Min Li ◽  
Zhen Bian ◽  
Chen-Yu Zhang ◽  
...  

Abstract The β2-integrin CD11b/CD18 mediates the firm adhesion of neutrophils (PMNs) to epithelial monolayers, a key step in PMN transepithelial migration. To complete the transmigration process, adherent PMNs must detach from epithelial monolayer surfaces to move forward. The mechanism that governs the detachment of adherent PMNs, however, is not clear. Here, we present evidence that cleavage of the CD11b extracellular domain containing the ligand-binding I-domain by 3 structural and functional related serine proteases (elastase, proteinase-3 and cathepsin G) serves as a novel mechanism for PMN detachment after the initial cell adhesion. Kinetic studies showed that the cleavage of CD11b is positively correlated with PMN detachment and subsequent transmigration. Moreover, the results demonstrated that elastase, proteinase-3 and cathepsin G all cleaved the purified, functionally active form of CD11b in a pattern similar to the CD11b shedding that occurs during PMN transmigration. Their cleavage sites on purified CD11b were located at 761Thr-Ala762 (elastase/proteinase-3) and 760Phe-Thr761 (cathepsin G), respectively. CD11b cleavage and PMN detachment and chemotaxis, were impaired in elastase/cathepsin G–deficient Beige mice; this defect could be restored by the addition of extracellular elastase. By illustrating CD11b shedding by elastase, proteinase-3 and cathepsin G as a novel mechanism for PMN detachment, our study provides novel therapeutic targets for controlling inflammation.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4282-4293 ◽  
Author(s):  
Debra M. MacIvor ◽  
Steven D. Shapiro ◽  
Christine T.N. Pham ◽  
Abderazzaq Belaaouaj ◽  
Soman N. Abraham ◽  
...  

Cathepsin G is a neutral serine protease that is highly expressed at the promyelocyte stage of myeloid development. We have developed a homologous recombination strategy to create a loss-of-function mutation for murine cathepsin G. Bone marrow derived from mice homozygous for this mutation had no detectable cathepsin G protein or activity, indicating that no other protease in bone marrow cells has the same specificity. Hematopoiesis in cathepsin G−/− mice is normal, and the mice have no overt abnormalities in blood clotting. Neutrophils derived from cathepsin G−/− mice have normal morphology and azurophil granule composition; these neutrophils also display normal phagocytosis and superoxide production and have normal chemotactic responses to C5a, fMLP, and interleukin-8. Although cathepsin G has previously shown to have broad spectrum antibiotic properties, challenges of mice with Staphylococcus aureus, Klebsiella pneumoniae, or Escherichia coli yielded survivals that were not different from those of wild-type animals. In sum, cathepsin G−/− neutrophils have no obvious defects in function; either cathepsin G is not required for any of these normal neutrophil functions or related azurophil granule proteases with different specificities (ie, neutrophil elastase, proteinase 3, azurocidin, and/or others) can substitute for it in vivo.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4282-4293 ◽  
Author(s):  
Debra M. MacIvor ◽  
Steven D. Shapiro ◽  
Christine T.N. Pham ◽  
Abderazzaq Belaaouaj ◽  
Soman N. Abraham ◽  
...  

Abstract Cathepsin G is a neutral serine protease that is highly expressed at the promyelocyte stage of myeloid development. We have developed a homologous recombination strategy to create a loss-of-function mutation for murine cathepsin G. Bone marrow derived from mice homozygous for this mutation had no detectable cathepsin G protein or activity, indicating that no other protease in bone marrow cells has the same specificity. Hematopoiesis in cathepsin G−/− mice is normal, and the mice have no overt abnormalities in blood clotting. Neutrophils derived from cathepsin G−/− mice have normal morphology and azurophil granule composition; these neutrophils also display normal phagocytosis and superoxide production and have normal chemotactic responses to C5a, fMLP, and interleukin-8. Although cathepsin G has previously shown to have broad spectrum antibiotic properties, challenges of mice with Staphylococcus aureus, Klebsiella pneumoniae, or Escherichia coli yielded survivals that were not different from those of wild-type animals. In sum, cathepsin G−/− neutrophils have no obvious defects in function; either cathepsin G is not required for any of these normal neutrophil functions or related azurophil granule proteases with different specificities (ie, neutrophil elastase, proteinase 3, azurocidin, and/or others) can substitute for it in vivo.


2006 ◽  
Vol 74 (9) ◽  
pp. 5284-5291 ◽  
Author(s):  
Susanne F. de Haar ◽  
Pieter S. Hiemstra ◽  
Martijn T. J. M. van Steenbergen ◽  
Vincent Everts ◽  
Wouter Beertsen

ABSTRACT Periodontitis is a chronic destructive infection of the tooth-supportive tissues, which is caused by pathogenic bacteria such as Actinobacillus actinomycetemcomitans. A severe form of periodontitis is found in Papillon-Lefèvre syndrome (PLS), an inheritable disease caused by loss-of-function mutations in the cathepsin C gene. Recently, we demonstrated that these patients lack the activity of the polymorphonuclear leukocyte (PMN)-derived serine proteinases elastase, cathepsin G, and proteinase 3. In the present study we identified possible pathways along which serine proteinases may be involved in the defense against A. actinomycetemcomitans. Serine proteinases are capable to convert the PMN-derived hCAP-18 into LL-37, an antimicrobial peptide with activity against A. actinomycetemcomitans. We found that the PMNs of PLS patients released lower levels of LL-37. Furthermore, because of their deficiency in serine proteases, the PMNs of PLS patients were incapable of neutralizing the leukotoxin produced by this pathogen, which resulted in increased cell damage. Finally, the capacity of PMNs from PLS patients to kill A. actinomycetemcomitans in an anaerobic environment, such as that found in the periodontal pocket, seemed to be reduced. Our report demonstrates a mechanism that suggests a direct link between an inheritable defect in PMN functioning and difficulty in coping with a periodontitis-associated pathogen.


Author(s):  
Nils Stührwohldt ◽  
Eric Bühler ◽  
Margret Sauter ◽  
Andreas Schaller

Abstract Increasing drought stress poses a severe threat to agricultural productivity. Plants, however, evolved numerous mechanisms to cope with such environmental stress. Here we report that the stress-induced production of a peptide signal contributes to stress tolerance. The expression of phytosulfokine (PSK) peptide precursor genes, and transcripts of three subtilisin-like serine proteases, SBT1.4, SBT3.7 and SBT3.8 were found to be up-regulated in response to osmotic stress. Stress symptoms were enhanced in sbt3.8 loss-of-function mutants and could be alleviated by PSK treatment. Osmotic stress tolerance was improved in plants overexpressing the precursor of PSK1 (proPSK1) or SBT3.8 resulting in higher fresh weight and improved lateral root development in the transgenic compared to wild-type plants. We further showed that SBT3.8 is involved in the biogenesis of the bioactive PSK peptide. ProPSK1 was cleaved by SBT3.8 at the C-terminus of the PSK pentapeptide. Processing by SBT3.8 depended on the aspartic acid residue directly following the cleavage site. ProPSK1 processing was impaired in the sbt3.8 mutant. The data suggest that increased expression in response to osmotic stress followed by the post-translational processing of proPSK1 by SBT3.8 leads to the production of PSK as a peptide signal for stress mitigation.


1999 ◽  
Vol 343 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Ajoy BASAK ◽  
Bakary B. TOURÉ ◽  
Claude LAZURE ◽  
Majambu MBIKAY ◽  
Michel CHRÉTIEN ◽  
...  

Proprotein convertase PC4A, a member of the subtilisin/kexin family of serine proteases, was obtained in enzymically active form following expression of vaccinia virus recombinant rat (r)PC4A in GH4C1 cells. It displayed maximal activity at pH 7.0 and a Ca2+ concentration of 2.0 mM. Using PC4-specific antibodies, Western blot analysis of the medium revealed a major band at ≈ 54 kDa, corresponding to the molecular size of mature rPC4A. Among the various peptidyl-[4-methylcoumarin 7-amide (MCA)] substrates tested, the one that was preferred the most by rPC4A was acetyl (Ac)-Arg-Lys-Lys-Arg-MCA, which is cleaved 9 times faster (as judged from Vmax/Km measurements) than the best furin and PC1 substrate, pGlu-Arg-Thr-Lys-Arg-MCA. Recombinant rPC4A, along with human (h)furin and hPC1, cleaved a 17-amino-acid synthetic peptide, YQTLRRRVKR↓ SLVVPTD (where ↓ denotes site of cleavage, and the important basic residues are shown in bold), encompassing the junction between the putative pro-segment of rPC4A and the active enzyme, suggesting a possible auto-activation of the enzyme. In an effort to identify potential physiological substrates for PC4, studies were performed with pro-[insulin-growth-factor (IGF)]-derived synthetic peptides, namely Ac-PAKSAR↓ SVRA (IGF-I66-75) and Ac-PAKSER↓ DVST (IGF-II63-72), as well as two lysine mutants [(IGF-I66-75Lys70) and (IGF-II63-72Lys67)]. Unlike PC1 and furin, rPC4A cleaved efficiently both IGF-I66-75 and IGF-II63-72, suggesting a possible role of PC4 in the maturation of IGF-I and -II. In contrast, the peptides with a position 2 (P2) lysine mutation, IGF-I66-75Lys70 and IGF-II63-72Lys67, were cleaved more efficiently by PC1 and furin compared with rPC4A. Furthermore, using synthetic peptides containing the processing sites of pituitary adenylate-cyclase-activating polypeptide (PACAP)-38, we were able to confirm that, of the two testicular enzymes PC4 and PC7, PC4 is the best candidate enzyme for maturation of PACAP. Our data suggest that rPC4A is a functionally active convertase, with a substrate specificity somewhat different from that of other convertases, namely KXXR↓ (where X denotes any other residue). As expected, p-chloromercuribenzoic acid and metal chelators such as EDTA, EGTA and trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid inhibit the proteolytic activity of rPC4A, whereas it is activated by dithiothreitol. PC4A was also inhibited by transition-metal ions (Cu2+>Hg2+>Zn2+ Ni2+>Co2+), as well as by small peptide semicarbazones (SCs), such as Arg-Lys-Lys-Arg-SC (Ki 0.75 μM) and Arg-Ser-Lys-Arg-SC (Ki 11.4 μM).


2005 ◽  
Vol 73 (2) ◽  
pp. 859-864 ◽  
Author(s):  
Björn Zimmerlein ◽  
Hae-Sun Park ◽  
Shaoying Li ◽  
Andreas Podbielski ◽  
P. Patrick Cleary

ABSTRACT The streptococcal pyrogenic exotoxin B (SpeB) is an important virulence factor of group A streptococci (GAS) with cysteine protease activity. Maturation of SpeB to a proteolytically active form was suggested to be dependent on cell-wall-anchored M1 protein, the major surface protein of GAS (M. Collin and A. Olsén, Mol. Microbiol. 36:1306-1318, 2000). Collin and Olsén showed that mutant GAS strains expressing truncated M protein secrete a conformationally different form of unprocessed SpeB with no proteolytic activity. Alternatively, we hypothesized that a truncated M protein may interfere with processing of this secreted protease, and therefore we tested cysteine protease activity in genetically defined mutant strains that express either no M protein or membrane-anchored M protein with an in-frame deletion of the AB repeat region. Measurements of SpeB activity by cleavage of a substrate n-benzoyl-Pro-Phe-Arg-p-nitroanilide hydrochloride showed that the proteolytic activities in culture supernatants of both mutants were similar to those from the wild-type strain. In addition, Western blot analysis of culture supernatants showed that SpeB expression and processing to a mature form was unaffected by either deletion mutation. Therefore, we conclude that M protein is not required for maturation of the streptococcal cysteine protease SpeB.


Hematology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Mary C. Dinauer

Abstract Immune deficiencies resulting from inherited defects in neutrophil function have revealed important features of the innate immune response. Although sharing an increased susceptibility to bacterial and fungal infections, these disorders each have distinctive features in their clinical manifestations and characteristic microbial pathogens. This review provides an update on several genetic disorders with impaired neutrophil function, their pathogenesis, and treatment strategies. These include chronic granulomatous disease, which results from inactivating mutations in the superoxide-generating nicotinamide dinucleotide phosphate oxidase. Superoxide-derived oxidants play an important role in the control of certain bacterial and fungal species, and also contribute to the regulation of inflammation. Also briefly summarized are updates on leukocyte adhesion deficiency, including the severe periodontal disease characteristic of this disorder, and a new immune deficiency associated with defects in caspase recruitment domain–containing protein 9, an adaptor protein that regulates signaling in neutrophils and other myeloid cells, leading to invasive fungal disease.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1991
Author(s):  
Matylda Resztak ◽  
Joanna Sobiak ◽  
Andrzej Czyrski

The review includes studies dated 2011–2021 presenting the newest information on voriconazole (VCZ), mycophenolic acid (MPA), and vancomycin (VAN) therapeutic drug monitoring (TDM) in children. The need of TDM in pediatric patients has been emphasized by providing the information on the differences in the drugs pharmacokinetics. TDM of VCZ should be mandatory for all pediatric patients with invasive fungal infections (IFIs). Wide inter- and intrapatient variability in VCZ pharmacokinetics cause achieving and maintaining therapeutic concentration during therapy challenging in this population. Demonstrated studies showed, in most cases, VCZ plasma concentrations to be subtherapeutic, despite the updated dosages recommendations. Only repeated TDM can predict drug exposure and individualizing dosing in antifungal therapy in children. In children treated with mycophenolate mofetil (MMF), similarly as in adult patients, the role of TDM for MMF active form, MPA, has not been well established and is undergoing continued debate. Studies on the MPA TDM have been carried out in children after renal transplantation, other organ transplantation such as heart, liver, or intestine, in children after hematopoietic stem cell transplantation or cord blood transplantation, and in children with lupus, nephrotic syndrome, Henoch-Schönlein purpura, and other autoimmune diseases. MPA TDM is based on the area under the concentration–time curve; however, the proposed values differ according to the treatment indication, and other approaches such as pharmacodynamic and pharmacogenetic biomarkers have been proposed. VAN is a bactericidal agent that requires TDM to prevent an acute kidney disease. The particular group of patients is the pediatric one. For this group, the general recommendations of the dosing may not be valid due to the change of the elimination rate and volume of distribution between the subjects. The other factor is the variability among patients that concerns the free fraction of the drug. It may be caused by both the patients’ population and sample preconditioning. Although VCZ, MMF, and VAN have been applied in pediatric patients for many years, there are still few issues to be solve regarding TDM of these drugs to ensure safe and effective treatment. Except for pharmacokinetic approach, pharmacodynamics and pharmacogenetics have been more often proposed for TDM.


2021 ◽  
Vol 22 (20) ◽  
pp. 10975
Author(s):  
Srinivas Akula ◽  
Zhirong Fu ◽  
Sara Wernersson ◽  
Lars Hellman

Several hematopoietic cells of the immune system store large amounts of proteases in cytoplasmic granules. The absolute majority of these proteases belong to the large family of chymotrypsin-related serine proteases. The chymase locus is one of four loci encoding these granule-associated serine proteases in mammals. The chymase locus encodes only four genes in primates, (1) the gene for a mast-cell-specific chymotryptic enzyme, the chymase; (2) a T-cell-expressed asp-ase, granzyme B; (3) a neutrophil-expressed chymotryptic enzyme, cathepsin G; and (4) a T-cell-expressed chymotryptic enzyme named granzyme H. Interestingly, this locus has experienced a number of quite dramatic expansions during mammalian evolution. This is illustrated by the very large number of functional protease genes found in the chymase locus of mice (15 genes) and rats (18 genes). A separate expansion has also occurred in ruminants, where we find a new class of protease genes, the duodenases, which are expressed in the intestinal region. In contrast, the opossum has only two functional genes in this locus, the mast cell (MC) chymase and granzyme B. This low number of genes may be the result of an inversion, which may have hindered unequal crossing over, a mechanism which may have been a major factor in the expansion within the rodent lineage. The chymase locus can be traced back to early tetrapods as genes that cluster with the mammalian genes in phylogenetic trees can be found in frogs, alligators and turtles, but appear to have been lost in birds. We here present the collected data concerning the evolution of this rapidly evolving locus, and how these changes in gene numbers and specificities may have affected the immune functions in the various tetrapod species.


Sign in / Sign up

Export Citation Format

Share Document