scholarly journals Insights into cell wall disintegration of Chlorella vulgaris

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262500
Author(s):  
Sophie Weber ◽  
Philipp M. Grande ◽  
Lars M. Blank ◽  
Holger Klose

With their ability of CO2 fixation using sunlight as an energy source, algae and especially microalgae are moving into the focus for the production of proteins and other valuable compounds. However, the valorization of algal biomass depends on the effective disruption of the recalcitrant microalgal cell wall. Especially cell walls of Chlorella species proved to be very robust. The wall structures that are responsible for this robustness have been studied less so far. Here, we evaluate different common methods to break up the algal cell wall effectively and measure the success by protein and carbohydrate release. Subsequently, we investigate algal cell wall features playing a role in the wall’s recalcitrance towards disruption. Using different mechanical and chemical technologies, alkali catalyzed hydrolysis of the Chlorella vulgaris cells proved to be especially effective in solubilizing up to 56 wt% protein and 14 wt% carbohydrates of the total biomass. The stepwise degradation of C. vulgaris cell walls using a series of chemicals with increasingly strong conditions revealed that each fraction released different ratios of proteins and carbohydrates. A detailed analysis of the monosaccharide composition of the cell wall extracted in each step identified possible factors for the robustness of the cell wall. In particular, the presence of chitin or chitin-like polymers was indicated by glucosamine found in strong alkali extracts. The presence of highly ordered starch or cellulose was indicated by glucose detected in strong acidic extracts. Our results might help to tailor more specific efforts to disrupt Chlorella cell walls and help to valorize microalgae biomass.

10.4081/1613 ◽  
2009 ◽  
Vol 45 (1) ◽  
pp. 51 ◽  
Author(s):  
B Baldan ◽  
P Andolfo ◽  
L Navazio ◽  
C Tolomio ◽  
P Mariani
Keyword(s):  

1973 ◽  
Vol 51 (6) ◽  
pp. 1147-1153 ◽  
Author(s):  
James L. Harris ◽  
Willard A. Taber

The composition of the cell walls of synnemal and vegetative hyphae of Ceratocystis ulmi was studied by fractionation and assay of released compounds. Residues after enzymatic hydrolyses were examined by electron microscopy. The synnemal wall was found to have 67% carbohydrate, 4.52% amino sugar, 5.02% protein, 1.6% lipid, and 0.59% ash, which accounted for 78.7% of the cell wall. The vegetative hyphal wall contained 56% carbohydrate, 3.44% amino sugar, 7.92% protein, 4.5% lipid, and 1.45% ash, which totaled 73.3% of the wall weight. Sugars identified were D-glucose, D-mannose, D-galactose, and L-rhamnose. Enzymatic hydrolysis of both wall types by cellulase and laminaranase indicated the presence of beta-1,3 and beta-1,4 linkages of glucose polymers. N-acetylglucosamine was liberated by chitinase. Most of the 16 amino acids detected in each wall type were at least twice as abundant in vegetative hyphal walls as in synnemal hyphal walls. Cellulase and laminaranase treatment of cell walls revealed a fibrillar structure. Chitinase-treated walls did not appear as fibrous, suggesting that the fibrous structure may be mostly chitinous. Synnemal cell walls are covered by electron-dense granules which may correspond to the pigment in the synnemal hyphae.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jeffrey P. Tingley ◽  
Kristin E. Low ◽  
Xiaohui Xing ◽  
D. Wade Abbott

AbstractThe production of biofuels as an efficient source of renewable energy has received considerable attention due to increasing energy demands and regulatory incentives to reduce greenhouse gas emissions. Second-generation biofuel feedstocks, including agricultural crop residues generated on-farm during annual harvests, are abundant, inexpensive, and sustainable. Unlike first-generation feedstocks, which are enriched in easily fermentable carbohydrates, crop residue cell walls are highly resistant to saccharification, fermentation, and valorization. Crop residues contain recalcitrant polysaccharides, including cellulose, hemicelluloses, pectins, and lignin and lignin-carbohydrate complexes. In addition, their cell walls can vary in linkage structure and monosaccharide composition between plant sources. Characterization of total cell wall structure, including high-resolution analyses of saccharide composition, linkage, and complex structures using chromatography-based methods, nuclear magnetic resonance, -omics, and antibody glycome profiling, provides critical insight into the fine chemistry of feedstock cell walls. Furthermore, improving both the catalytic potential of microbial communities that populate biodigester reactors and the efficiency of pre-treatments used in bioethanol production may improve bioconversion rates and yields. Toward this end, knowledge and characterization of carbohydrate-active enzymes (CAZymes) involved in dynamic biomass deconstruction is pivotal. Here we overview the use of common “-omics”-based methods for the study of lignocellulose-metabolizing communities and microorganisms, as well as methods for annotation and discovery of CAZymes, and accurate prediction of CAZyme function. Emerging approaches for analysis of large datasets, including metagenome-assembled genomes, are also discussed. Using complementary glycomic and meta-omic methods to characterize agricultural residues and the microbial communities that digest them provides promising streams of research to maximize value and energy extraction from crop waste streams.


Polar Record ◽  
2002 ◽  
Vol 38 (206) ◽  
pp. 211-218 ◽  
Author(s):  
Tiia Taipale ◽  
Satu Huttunen

AbstractA study was made of methanol-extractable UV-B-absorbing pigments under enhanced UV-B treatment. UV-B-absorbing pigments in two common ectohydric mosses showed seasonal variation during the summer months. Pigment contents were highest in June, decreased in July, and thereafter remained unchanged until September. In Hylocomium splendens, a significant increase of pigments was observed at the end of the experiment. The intracellular localization of caffeine-stabilized flavonoids was manifested as dark electron-dense deposits in the cell walls and intracellular dark deposits in the cell plasma. The dark deposits in the cell walls of Pleurozium schreberi were located either in the outer part of the cell wall or in the middle lamellae of the wall structures. Hylocomium splendens had a stratified cell-wall structure, in which three dark electron-dense cell layers could be identified. Intracellular deposits were located in different parts of the cell, but electron-dense deposits were observed at the cell margins and in the proximity of the nucleus. Although certain cell ultrastructural disturbances (for example, lipid accumulation, chloroplast disintegration) in moss leaf cells were observed, the short-term UV-B treatment did not increase the intensity of the dark deposits.


2013 ◽  
Vol 2 (2) ◽  
pp. 65 ◽  
Author(s):  
Vita Paramita ◽  
Mohamad Endy Yulianto

<p>This work proposed a study of direct enzymatic of vanillin formation by using rumen fluid which has enzymatic capability for tissue disruption of vanilla green pods to avoid the curing process. Application of enzymes during the formation of vanilla aromas and flavors and its extraction present nice opportunity to improve productivity, as the enzymatic reaction possibly substitute the microbial process in the traditional fermentation. Glucovanillin, the precursor of vanillin, contacted with the B-glucosidase in the green pods by destructing the cell wall. Liquid rument was providing enzyme for cell wall degradation. The contact of glucovanillin and B-glucosidase lead the hydrolysis of glucovanillin into vanillin. The amounts of glucovanillin and vanillin were examined by using HPLC analysis. The identification of vanillin was investigated by using liquid chromatography-mass spectrofotometry. Vanillin content of vanilla green pods was found higher in which by treating the vanilla green pods at 30°C.</p>


1989 ◽  
Vol 55 (1) ◽  
pp. 105-110 ◽  
Author(s):  
Kuniko Yamaguchi ◽  
Toshiyoshi Araki ◽  
Takahiko Aoki ◽  
Chao-Huang Tseng ◽  
Manabu Kitamikado

Sign in / Sign up

Export Citation Format

Share Document