scholarly journals Genome-wide association mapping for high temperature tolerance in wheat through 90k SNP array using physiological and yield traits

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262569
Author(s):  
Hafiz Ghulam Muhu-Din Ahmed ◽  
Muhammad Naeem ◽  
Yawen Zeng ◽  
Muhammad Abdul Rehman Rashid ◽  
Aziz Ullah ◽  
...  

Dissecting the genetic basis of physiological and yield traits against tolerance to heat stress is an essential in wheat breeding programs to boost up the wheat yield for sustainable food security. Herein, a genome-wide association study (GWAS) was performed to reveal the genetic basis of heat tolerance using high-density Illumina 90K Infinium SNPs array through physiological and yield indices. These indices were phenotyped on a diverse panel of foreign and domestic genotypes of Pakistan, grown in normal and heat-stressed environments. Based on STRUCTURE analysis, the studied germplasm clustered into four sub-population. Highly significant variations with a range of moderate (58.3%) to high (77.8%) heritability was observed under both conditions. Strong positive correlation existed among physiological and yield related attributes. A total of 320 significant (-log10 P ≥ 3) marker-trait associations (MTAs) were identified for the observed characters. Out of them 169 and 151 MTAs were recorded in normal and heat stress environments, respectively. Among the MTA loci, three (RAC875_c103017_302, Tdurum_contig42087_1199, and Tdurum_contig46877_488 on chromosomes 4B, 6B, and 7B respectively), two (BobWhite_c836_422 and BS00010616_51) and three (Kukri_rep_c87210_361, D_GA8KES401BNLTU_253 and Tdurum_contig1015_131) on chromosomes 5A, 1B, and 3D at the positions 243.59cM, 77.82cM and 292.51cM) showed pleiotropic effects in studied traits under normal, heat-stressed and both conditions respectively. The present study not only authenticated the numerous previously reported MTAs for examined attributes but also revealed novel MTAs under heat-stressed conditions. Identified SNPs will be beneficial in determining the novel genes in wheat to develop the heat tolerant and best yielded genotypes to fulfill the wheat requirement for the growing population.

2018 ◽  
Vol 50 (7) ◽  
pp. 523-531 ◽  
Author(s):  
Bingxing An ◽  
Jiangwei Xia ◽  
Tianpeng Chang ◽  
Xiaoqiao Wang ◽  
Jian Miao ◽  
...  

Cattle internal organs as accessible raw materials have a long history of being widely used in beef processing, feed and pharmaceutical industry. These traits not only are of economic interest to breeders, but they are intrinsically linked to many valuable traits, such as growth, health, and productivity. Using the Illumina Bovine HD 770K SNP array, we performed a genome-wide association study for heart weight, liver weight, spleen weight, lung weight, and kidney weight in 1,217 Simmental cattle. In our research, 38 significant single nucleotide polymorphisms (SNPs) ( P < 1.49 × 10−6) were identified for five internal organ weight traits. These SNPs are within or near 13 genes, and some of them have been reported previously, including NDUFAF4, LCORL, BT.94996, SLIT2, FAM184B, LAP3, BBS12, MECOM, CD300LF, HSD17B3, TLR4, MXI1, and MB21D2. In addition, we detected four haplotype blocks on BTA6 containing 18 significant SNPs associated with spleen weight. Our results offer worthy insights into understanding the genetic mechanisms of internal organs' development, with potential application in breeding programs of Simmental beef cattle.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1722
Author(s):  
Byeong Yong Jeong ◽  
Yoonjung Lee ◽  
Yebin Kwon ◽  
Jee Hye Kim ◽  
Tae-Ho Ham ◽  
...  

A genome-wide association study (GWAS) was used to investigate the genetic basis of chilling tolerance in a collection of 117 rice accessions, including 26 Korean landraces and 29 weedy rices, at the reproductive stage. To assess chilling tolerance at the early young microspore stage, plants were treated at 12 °C for 5 days, and tolerance was evaluated using seed set fertility. GWAS, together with principal component analysis and kinship matrix analysis, revealed five quantitative trait loci (QTLs) associated with chilling tolerance on chromosomes 3, 6, and 7. The percentage of phenotypic variation explained by the QTLs was 11–19%. The genomic region underlying the QTL on chromosome 3 overlapped with a previously reported QTL associated with spikelet fertility. Subsequent bioinformatic and haplotype analyses suggested three candidate chilling-tolerance genes within the QTL linkage disequilibrium block: Os03g0305700, encoding a protein similar to peptide chain release factor 2; Os06g0495700, encoding a beta tubulin, autoregulation binding-site-domain-containing protein; and Os07g0137800, encoding a protein kinase, core-domain-containing protein. Further analysis of the detected QTLs and the candidate chilling-tolerance genes will facilitate strategies for developing chilling-tolerant rice cultivars in breeding programs.


2020 ◽  
Author(s):  
PENG MA ◽  
Xiao Zhang ◽  
Bowen Luo ◽  
Zhen Chen ◽  
Xuan He ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) play important roles in essential biological processes. However, our understanding of lncRNAs as competing endogenous RNAs (ceRNAs) and their responses to nitrogen stress is still limited.Results: Here, we surveyed the lncRNAs and miRNAs in maize inbred line P178 leaves and roots at the seedling stage under high-nitrogen and low-nitrogen conditions using lncRNA-Seq and small RNA-Seq. A total of 894 differentially expressed lncRNAs and 38 different miRNAs were identified. Co-expression analysis found two lncRNAs and four lncRNA-targets could competitively combine with ZmmiR159 and ZmmiR164, respectively. To dissect the genetic regulatory by which lncRNAs might enable adaptation to limited nitrogen availability. An association mapping panel containing a high-density single–nucleotide polymorphism (SNP) array (56,110 SNPs) combined with variable LN resistance-related phenotypes obtained from hydroponics was used for a genome-wide association study (GWAS). By combining GWAS and RNA-Seq, 170 differently expressed lncRNAs within the range of significant markers were screened. Moreover, 40 consistently LN-responsive genes including those involved in glutamine biosynthesis and nitrogen acquisition in root were identified. Transient expression assays in Nicotiana benthamiana demonstrated LNC_002923 could inhabit ZmmiR159-guided cleavage of Zm00001d015521. Conclusions: These lncRNAs containing trait-associated significant SNPs could consider to be related to root development and nutrient utilization. Taken together, the results of our study can provide new insights into the potential regulatory roles of lncRNAs in response to LN stress, and give valuable information for further screening of candidates as well as the improvement of maize regarding LN-responsive resistance.


Animals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 260 ◽  
Author(s):  
Bo Zhu ◽  
Qinghe Li ◽  
Ranran Liu ◽  
Maiqing Zheng ◽  
Jie Wen ◽  
...  

Presently, the heterophil-to-lymphocyte (H/L) ratio is being studied extensively as a disease resistance trait. Through intricate mechanisms to identify and destroy pathogenic microorganisms, heterophils play a pivotal role in the immune defense systems of avian species. To reveal the genetic basis and molecular mechanisms affecting the H/L ratio, phenotypic and H/L data from 1650 white feather chicken broilers were used in performing a genome-wide association study. A self-developed, chicken-specific 55K chip was used for heterophils, lymphocytes, and H/L classification, according to individual genomic DNA profiles. We identified five significant single nucleotide polymorphisms (SNPs) when the genome-wide significance threshold was set to 5% (p < 2.42 × 10−6). A total of 15 SNPs obtained seemingly significant levels (p < 4.84 × 10−5). Gene annotation indicated that CARD11 (Caspase recruitment domain family member 11), BRIX1 (Biogenesis of ribosomes BRX1), and BANP (BTG3 associated nuclear protein) play a role in H/L-associated cell regulation and potentially constitute candidate gene regions for cellular functions dependent on H/L ratios. These results lay the foundation for revealing the genetic basis of disease resistance and future marker-assisted selection for disease resistance.


2020 ◽  
Author(s):  
Zhien Pu ◽  
Xueling Ye ◽  
Yang Li ◽  
Zehou Liu ◽  
Bingxin Shi ◽  
...  

Abstract Backgrounds: Grain protein concentration (GPC), grain starch concentration (GSC), and wet gluten concentration (WGC) are complex traits that determine nutrient concentration, end-use quality, and yield in wheat. To identify the elite and stable loci or genomic regions conferring high GPC, GSC, and WGC, a genome-wide association study (GWAS) based on a mixed linear model (MLM) was performed using 55K single nucleotide polymorphism (SNP) array in a panel of 236 wheat accessions, including 160 commercial varieties and 76 landraces, derived from Sichuan Province, China. The panel was evaluated for GPC, GSC, and WGC at four different fields. Results: Phenotypic analysis showed variation in GPC, GSC, and WGC among the different genotypes and environments. GWAS identified 12 quantitative trait loci (QTL) (-log10(P) > 2.5) associated with these three quality traits in at least two environments and located on chromosomes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 5D, and 7D; the phenotypic variation explained (PVE) by these QTL ranged from 4.2% to 10.7%. Among these, three, seven, and two QTL are associated with GPC, GSC, and WGC, respectively; five QTL (QGsc.sicau-1BL, QGsc.sicau-1DS, QGsc.sicau-2DL.1, QGsc.sicau-2DL.2, QWgc.sicau-5DL) were defined potentially novel Compared with the previously reported QTLs/genes by linkage or association mapping, 5 QTLs (QGsc.sicau-1BL, QGsc.sicau-1DS, QGsc.sicau-2DL.1, QGsc.sicau-2DL.2, QWgc.sicau-5DL) were potentially novel. Furthermore, 21 presumptive candidate genes, which are involved in the metabolism or transportation of all kinds of carbohydrates, photosynthesis, programmed cell death, the balance of abscisic acid and ethylene, within these potentially novel genomic regions were predicted. Conclusions: This study provided new genetic resources and valuable genetic information of nutritional quality to broaden the genetic background and laid the molecular foundation for marker-assisted selection in wheat quality breeding.


2014 ◽  
Vol 51 (12) ◽  
pp. 1272-1284 ◽  
Author(s):  
Uma Vaidyanathan ◽  
Stephen M. Malone ◽  
Jennifer M. Donnelly ◽  
Micah A. Hammer ◽  
Michael B. Miller ◽  
...  

Blood ◽  
2015 ◽  
Vol 125 (4) ◽  
pp. 680-686 ◽  
Author(s):  
Virginia Perez-Andreu ◽  
Kathryn G. Roberts ◽  
Heng Xu ◽  
Colton Smith ◽  
Hui Zhang ◽  
...  

Key Points In this first ALL GWAS in AYAs, we determined that inherited GATA3 variants strongly influence ALL susceptibility in this age group. These findings revealed similarities and differences in the genetic basis of ALL susceptibility between young children and AYAs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peng Ma ◽  
Xiao Zhang ◽  
Bowen Luo ◽  
Zhen Chen ◽  
Xuan He ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) play important roles in essential biological processes. However, our understanding of lncRNAs as competing endogenous RNAs (ceRNAs) and their responses to nitrogen stress is still limited. Results Here, we surveyed the lncRNAs and miRNAs in maize inbred line P178 leaves and roots at the seedling stage under high-nitrogen (HN) and low-nitrogen (LN) conditions using lncRNA-Seq and small RNA-Seq. A total of 894 differentially expressed lncRNAs and 38 different miRNAs were identified. Co-expression analysis found that two lncRNAs and four lncRNA-targets could competitively combine with ZmmiR159 and ZmmiR164, respectively. To dissect the genetic regulatory by which lncRNAs might enable adaptation to limited nitrogen availability, an association mapping panel containing a high-density single–nucleotide polymorphism (SNP) array (56,110 SNPs) combined with variable LN tolerant-related phenotypes obtained from hydroponics was used for a genome-wide association study (GWAS). By combining GWAS and RNA-Seq, 170 differently expressed lncRNAs within the range of significant markers were screened. Moreover, 40 consistently LN-responsive genes including those involved in glutamine biosynthesis and nitrogen acquisition in root were identified. Transient expression assays in Nicotiana benthamiana demonstrated that LNC_002923 could inhabit ZmmiR159-guided cleavage of Zm00001d015521. Conclusions These lncRNAs containing trait-associated significant SNPs could consider to be related to root development and nutrient utilization. Taken together, the results of our study can provide new insights into the potential regulatory roles of lncRNAs in response to LN stress, and give valuable information for further screening of candidates as well as the improvement of maize resistance to LN stress.


2019 ◽  
Vol 109 (7) ◽  
pp. 1208-1216 ◽  
Author(s):  
Lei Wu ◽  
Yu Zhang ◽  
Yi He ◽  
Peng Jiang ◽  
Xu Zhang ◽  
...  

Improving resistance to Fusarium head blight (FHB) in wheat is crucial in the integrated management of the disease and prevention of deoxynivalenol (DON) contamination in grains. To identify novel sources of resistance, a genome-wide association study (GWAS) was performed using a panel of 213 accessions of elite wheat germplasm of China. The panel was evaluated for FHB severity in four environments and DON content in grains in two environments. High correlations across environments and high heritability were observed for FHB severity and DON content in grains. The panel was also genotyped with the 90K Illumina iSelect single nucleotide polymorphism (SNP) array and 11,461 SNP markers were obtained. The GWAS revealed a total of six and three loci significantly associated with resistance to fungal spread and DON accumulation in at least two environments, respectively. QFHB-2BL.1 tagged by IWB52433 and QFHB-3A tagged by IWB50548 were responsible for resistance to both fungal spread and DON accumulation. In summary, this study provided an overview of FHB resistance resources in elite Chinese wheat germplasm and identified novel resistance loci that could be used for wheat improvement.


Sign in / Sign up

Export Citation Format

Share Document