scholarly journals The impact of a 6-month mission to the International Space Station (ISS) on salivary antimicrobial proteins

Author(s):  
Nadia H Agha ◽  
et. al.
2020 ◽  
Vol 128 (2) ◽  
pp. 264-275 ◽  
Author(s):  
Nadia H. Agha ◽  
Forrest L. Baker ◽  
Hawley E. Kunz ◽  
Guillaume Spielmann ◽  
Preteesh L. Mylabathula ◽  
...  

As the international space community plans for manned missions to Mars, spaceflight-associated immune dysregulation has been identified as a potential risk to the health and safety of the flight crew. There is a need to determine whether salivary antimicrobial proteins, which act as a first line of innate immune defense against multiple pathogens, are altered in response to long-duration (>6 mo) missions. We collected 7 consecutive days of whole and sublingual saliva samples from eight International Space Station (ISS) crewmembers and seven ground-based control subjects at nine mission time points, ~180 and ~60 days before launch (L−180/L−60), on orbit at flight days ~10 and ~90 (FD10/FD90) and ~1 day before return (R−1), and at R+0, R+18, R+33, and R+66 days after returning to Earth. We found that salivary secretory (s)IgA, lysozyme, LL-37, and the cortisol-to-dehydroepiandrosterone ratio were elevated in the ISS crew before (L−180) and during (FD10/FD90) the mission. “Rookie” crewmembers embarking on their first spaceflight mission had lower levels of salivary sIgA but increased levels of α-amylase, lysozyme, and LL-37 during and after the mission compared with the “veteran” crew who had previously flown. Latent herpesvirus reactivation was distinct to the ~6-mo mission crewmembers who performed extravehicular activity (“spacewalks”). Crewmembers who shed at least one latent virus had higher cortisol levels than those who did not shed. We conclude that long-duration spaceflight alters the concentration and/or secretion of several antimicrobial proteins in saliva, some of which are related to crewmember flight experience, biomarkers of stress, and latent viral reactivation. NEW & NOTEWORTHY Spaceflight-associated immune dysregulation may jeopardize future exploration-class missions. Salivary antimicrobial proteins act as a first line of innate immune defense. We report here that several of these proteins are elevated in astronauts during an International Space Station mission, particularly in those embarking on their first space voyage. Astronauts who shed a latent herpesvirus also had higher concentrations of salivary cortisol compared with those who did not shed. Stress-relieving countermeasures are needed to preserve immunity and prevent viral reactivation during prolonged voyages into deep space.


2021 ◽  
Vol 263 (4) ◽  
pp. 2740-2754
Author(s):  
Jose Limardo ◽  
Christopher S. Allen ◽  
Richard W. Danielson ◽  
Andrew J. Boone

Environmental noise in space vehicles, caused by onboard equipment and crew activities, has generated concerns for crew health and safety since early U.S. space missions. The International Space Station (ISS) provides a unique environment where acoustic conditions can be monitored while crewmembers from the U.S. and their international partners work and live for as long as 6 to 12 consecutive months. This review of acoustic dosimetry data collected to date reveals that the noise exposure limits of NASA's stringent noise constraint flight rule have been exceeded in 41% of these dosimetry measurements since ISS Increment 17 (2008), with undefined impacts to crew. These measurements do not take into account the effects of hearing protection devices worn by the crew. The purpose of this paper is to provide an update on ISS noise exposure monitoring approaches and hearing conservation strategies that include acoustic dosimetry data collected since the ISS Increment 55 mission (April 2018). Future directions and recommendations for the ISS noise exposure monitoring program will also be presented, including research initiatives aimed at better defining the impact of ISS noise on crew health and performance.


2020 ◽  
pp. 104-119
Author(s):  
E.V. Popova ◽  
I.V. Kutnik ◽  
A.I. Kobatov ◽  
N.B. Verbitskaya ◽  
I.V. Churilova ◽  
...  

Since 2007, a series of experiments on the production and use of product with high probiotic potential is being performed on the board of the ISS in order to weaken the impact of mutagenic factors on the human body. The first research objective was to develop the technology of the microorganism emulsive cultivation under weightless conditions on the board of the ISS. The second research objective was to obtain products of microbiological origin good for maintaining the required composition of human endo-microflora. Crews of the ISS-49 through ISS-63 were involved in the research in the framework of the “Probiovit” space experiment. The paper analyzes and summarizes obtained experimental results.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1060
Author(s):  
Mary E. Hummerick ◽  
Christina L. M. Khodadad ◽  
Anirudha R. Dixit ◽  
Lashelle E. Spencer ◽  
Gretchen J. Maldonado-Vasquez ◽  
...  

The establishment of steady-state continuous crop production during long-term deep space missions is critical for providing consistent nutritional and psychological benefits for the crew, potentially improving their health and performance. Three technology demonstrations were completed achieving simultaneous multi-species plant growth and the concurrent use of two Veggie units on the International Space Station (ISS). Microbiological characterization using molecular and culture-based methods was performed on leaves and roots from two harvests of three leafy greens, red romaine lettuce (Lactuca sativa cv. ‘Outredgeous’); mizuna mustard, (Brassica rapa var japonica); and green leaf lettuce, (Lactuca sativa cv. Waldmann’s) and associated rooting pillow components and Veggie chamber surfaces. Culture based enumeration and pathogen screening indicated the leafy greens were safe for consumption. Surface samples of the Veggie facility and plant pillows revealed low counts of bacteria and fungi and are commonly isolated on ISS. Community analysis was completed with 16S rRNA amplicon sequencing. Comparisons between pillow components, and plant tissue types from VEG-03D, E, and F revealed higher diversity in roots and rooting substrate than the leaves and wick. This work provides valuable information for food production-related research on the ISS and the impact of the plant microbiome on this unique closed environment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexander A. Voorhies ◽  
C. Mark Ott ◽  
Satish Mehta ◽  
Duane L. Pierson ◽  
Brian E. Crucian ◽  
...  

2019 ◽  
Vol 224 ◽  
pp. 92-103 ◽  
Author(s):  
Alejandro Sánchez de Miguel ◽  
Christopher C.M. Kyba ◽  
Martin Aubé ◽  
Jaime Zamorano ◽  
Nicolas Cardiel ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
pp. 2-23 ◽  
Author(s):  
Trisha A. Rettig ◽  
Claire Ward ◽  
Michael J. Pecaut ◽  
Stephen K. Chapes

AbstractSpaceflight is known to affect immune cell populations. In particular, splenic B-cell numbers decrease during spaceflight and in ground-based physiological models. Although antibody isotype changes have been assessed during and after spaceflight, an extensive characterization of the impact of spaceflight on antibody composition has not been conducted in mice. Next Generation Sequencing and bioinformatic tools are now available to assess antibody repertoires. We can now identify immunoglobulin gene-segment usage, junctional regions, and modifications that contribute to specificity and diversity. Due to limitations on the International Space Station, alternate sample collection and storage methods must be employed. Our group compared Illumina MiSeq® sequencing data from multiple sample preparation methods in normal C57Bl/6J mice to validate that sample preparation and storage would not bias the outcome of antibody repertoire characterization. In this report, we also compared sequencing techniques and a bioinformatic workflow on the data output when we assessed the IgH and Igκ variable gene usage. Our bioinformatic workflow has been optimized for Illumina HiSeq® and MiSeq® datasets, and is designed specifically to reduce bias, capture the most information from Ig sequences, and produce a data set that provides other data mining options.


Sign in / Sign up

Export Citation Format

Share Document