scholarly journals Detection of aerobic bacterial pathogens associated with early embryonic death in pregnant New Zealand female Rabbits in Egypt

2021 ◽  
Vol 14 (4) ◽  
pp. 986-995
Author(s):  
Heba Roshdy ◽  
Azhar G. Shalaby ◽  
Ahmed Abd Elhalem Mohamed ◽  
Heba Badr

Background and Aim: Rabbits are a highly sensitive species and susceptible to various bacterial pathogens that may be causative agents for early embryonic death. This study aimed to explore the administration of different bacterial agents in does suffering from early embryonic death. Furthermore, identification of genes associated with virulence was performed to identify the phenotypic and genotypic antimicrobial resistance patterns that may increase the virulence of pathogens and lead to early embryonic death. Materials and Methods: We isolated and identified bacterial agents in 106 samples from live and dead female rabbits that had undergone early embryonic death, including liver and intestine tissue, aborted fetuses, discharges, and vaginal swabs. Conventional polymerase chain reaction (PCR) was conducted to confirm the identity of the isolated bacterial strains and their virulence. Moreover, antibiotic resistance was studied phenotypically and genotypically. Results: We isolated Escherichia coli, Salmonella, Staphylococcus aureus, Pasteurella multocida, and Listeria monocytogenes. PCR confirmed typical identification except in P. multocida, which was confirmed as Gallibacterium spp. in some cases. The final percentage of detection was 34%, 30.2%, 16.9%, 13.2%, and 11.3%, respectively. Virulence properties were investigated using different designated genes. All Salmonella strains harbored invA, stn, avrA, and ompf genes, while the sopE gene was identified in 31.25%. E. coli strains harboring the iss gene lacked the shiga toxin (stx1) gene. L. monocytogenes and S. aureus strains harbored the hemolysin gene (66.7% and 33.4%, respectively). Multidrug resistance was detected phenotypically and genotypically in most strains. Each bacterial pathogen had a different antibiotic resistance profile. Conclusion: Multiple bacterial species may contribute to early embryonic death in does. Furthermore, the combined infection could be the main cause of early embryonic death. Thus, monitoring programs should bear this in mind and focus on the early detection of these bacterial agents in female rabbits to avoid embryonic death.

Author(s):  
C. Lalremruata ◽  
T.K. Dutta ◽  
P. Roychoudhury ◽  
Sanjeev Kumar ◽  
A. Sen ◽  
...  

Background: Illegal migration of pigs/piglets from Myanmar to Mizoram is a common practice to meet the local demands. The migrated animals are suspected as potential carrier of various microbial pathogens. The present study was conducted on isolation, identification and molecular characterization of major bacterial pathogens (Actinobacillus pleuropneumoniae, Bordetella bronchiseptica, Haemophilus parasuis, Mycoplasma hyopneumoniae and Pasteurella multocida) in pigs illegally migrated from Myanmar to Mizoram. Methods: A total of 209 rectal swabs and 209 nasal swabs were collected from apparently healthy migrated pigs during October 2018 to April, 2019. All the samples were processed for PCR based detection of target bacterial species followed by isolation and identification by bacteriological techniques. The bacterial species were further confirmed by BD Phoenix automated bacterial identification system and selected virulence genes of the bacterial species were determined by specific PCR assay. Result: By species specific PCR, 110 samples were found to be positive for selected bacterial species, of which 20 (9.57%), 1 (0.478%), 86 (41.15%), 2 (0.956%) and 1 (0.478%) were A. pleuropneumoniae, B. bronchiseptica, H. parasuis, M. hyopneumoniae and P. multocida, respectively. A total of 52 bacterial strains were isolated and identified, of which 11, 1, 39 and 1 were A. pleuropneumoniae, B. bronchiseptica, H. parasuis, M. hyopneumoniae and P. multocida, respectively. Virulence genes were detected in A. pleuropneumoniae and H. parasuis isolates. Based upon the published literatures, this is the first ever report of isolation and identification of pathogenic A. pleuropneumoniae and H. parasuis in pigs in India.


2020 ◽  
Vol 70 (12) ◽  
pp. 4287-4294

Cancer is the second leading cause of death in Romania and worldwide. Cancer patients are at increasing risk of acquiring bacterial infection with multi-resistant germs, including multidrug-resistant (MDR) strains of Gram-negative bacteria involved in nosocomial infection. Romania is one of the South-Eastern European countries with one of the highest prevalence rates of MDR pathogens. To determine the resistance pattern of bacterial profile and antibiotic resistance pattern in cancer patients admitted at the County Emergency Clinical Hospital Craiova, Romania. A retrospective study of bacterial pathogens was carried out on 90 adult cancer patients admitted from January to December 2018. The analysis of the resistance patterns for the action of the appropriate antibiotics was performed using Vitek 2 Compact system and diffusion method. In this study there were analysed 92 samples from 90 oncological patients (37-86 years). A total of 157 bacterial isolates were obtained, of which 37 strains of Staphylococcus aureus (23.56%), followed by Streptococcus pneumoniae (23- 14.64%), Klebsiella spp. and Escherichia coli (22 - 14,01%). The most common isolates were from respiratory tract (86 isolates - 54.77%). High rates of MDR were found for E. coli (63.63%), MRSA (61,11%) and Klebsiella spp. (54,54%), while one third of the isolated strains of Pseudomonas aeruginosa, Acinetobacter spp. and Proteus spp. were MDR. The findings of this study may be the basis for further more extensive studies highlighting the germs involved in the infectious pathology of cancer patients, in order to determine the antimicrobial resistance and to improve the methods of prophylaxis and treatment. Keywords: multidrug resistance (MDR), cancer patients, bacterial pathogen


2017 ◽  
Vol 65 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Wenlong Zhang ◽  
Xiaodan Liu ◽  
Mengcheng Liu ◽  
Bo Ma ◽  
Li Xu ◽  
...  

Pasteurella multocida, Mannheimia haemolytica and Trueperella pyogenes are three bacterial pathogens closely associated with the bovine respiratory disease complex (BRDC). In the current study, a multiplex PCR for the simultaneous detection of these three bacteria in cultures was established. After serial optimisation, the detection limit of the method for the genomic DNA of the three bacteria was 40 pg/μl. The method could detect the genomic DNA of these three bacteria but not the genomic DNA of seven other bacterial strains. Together with the bacterial enrichment technology, the multiplex PCR could be used for detecting the three bacteria in animal tissues. This method might be valuable for speeding up laboratory diagnosis and directing the treatment of BRDC to these three bacterial pathogens.


2000 ◽  
Vol 38 (1) ◽  
pp. 327-332
Author(s):  
D. C. DeRosa ◽  
G. D. Mechor ◽  
J. J. Staats ◽  
M. M. Chengappa ◽  
T. R. Shryock

ABSTRACT Twenty-four matched pairs of isolates of Pasteurella haemolytica and three matched pairs of isolates of Pasteurella multocida were isolated by using a nasal swab and a transtracheal swab from individual calves with clinical signs of bovine respiratory disease. The identity of each matched pair was confirmed biochemically and serologically. The similarity of the isolates obtained from a nasal swab and from a transtracheal swab was compared by using ribotyping and antibiotic susceptibility analyses. Although the calves were sampled only once with a nasal and a transtracheal swab, when both samples were bacteriologically positive the nasal swab identified the same bacterial species as the transtracheal swab 96% of the time. The nasal swab isolate was genetically identical to the transtracheal isolate in 70% of the matched pairs. Six different ribotypes were observed for the P. haemolytica isolates, while only one ribotype was observed for the limited number of P. multocida isolates. Of the six P. haemolytica ribotypes, two ribotypes predominated. All the paired isolates displayed similar susceptibility to ceftiofur, erythromycin, tilmicosin, trimethoprim-sulfamethoxazole, and florfenicol, with some minor variations for ampicillin and spectinomycin. These results suggest that a nasal swab culture can be predictive of the bacterial pathogen within the lung when the isolates are from an acutely ill animal and can be used to determine antibiotic susceptibility.


2016 ◽  
Vol 3 (2) ◽  
pp. 32-35 ◽  
Author(s):  
Ganesh Shah ◽  
Bhishma Pokhrel ◽  
Anish Kumar Shah ◽  
Puspa Bahadur Bista ◽  
Asmita Bhattarai

Introductions: Urinary tract infection (UTI) is a common bacterial infection affecting children. A prompt recognition and accurate antimicrobial management are vital to prevent kidney damage. This study aims to determine the bacterial pathogens and their patterns of antimicrobial resistance in children presenting with UTI.Methods: This was a cross sectional study done at Patan Hospital, Patan Academy of Health Sciences, from Nov 2012 to Oct 2016. There were 88 children between age group of 1 to 14 years with culture proven UTI. The bacterial pathogens and antibiotic resistance were analysed.Results: Three most common organisms isolated were E. Coli 60 (68%), Klebsiella species 15 (17%) and Proteus 7 (8%). The resistance of E. Coli to ampicillin, ofloxacin, cefotaxime, gentamicin and amikacin were 51 (85%), 49 (82%), 45 (75%), 17 (28%) and 2 (3%) respectively. The resistance to ampicillin was Klebsiella species 13 (87%), Proteus 6 (86%) and Enterococcus 3 (60%).Conclusions: The E. Coli was leading bacterial pathogen causing UTI in children, with ampicillin resistance occurring in more than half of these cases. Amikacin and gentamicin had lower antibiotic resistance and can be used for treatment of UTI in children.Journal of Patan Academy of Health Sciences. 2016 Dec;3(2):32-35


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Veronica Folliero ◽  
Gianluigi Franci ◽  
Federica Dell’Annunziata ◽  
Rosa Giugliano ◽  
Francesco Foglia ◽  
...  

Microbial biofilms pose a serious threat to patients requiring medical devices (MDs). Prolonged periods of implantation carry a high risk of device-related infections (DRIs). Patients with DRIs often have negative outcomes following the failure of antibiotic treatment. Resistant DRIs are mainly due to the MDs contamination by bacteria producing biofilm. The present study aimed to detect biofilm formation among MD bacterial isolates and to explore their antibiotic resistance profile. The study was conducted on 76 MDs, collected at University Hospital of Campania “Luigi Vanvitelli,” between October 2019 and September 2020. Identification of isolates and antibiotic susceptibility testing were performed using Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and Phoenix Becton Dickinson, respectively. Biofilm-forming abilities were assessed using the tissue culture plate (TCP) method. Among the 94 MDs isolated strains, 42.7% were Gram-positive, 40.3% Gram-negative, and 17% Candida species. Among 78 bacterial strains, 43.6% were non-biofilm producers while 56.4% produced biofilms. All biofilm producing isolates were sensitive to a limited spectrum of antibiotic classes. All moderate and strong biofilm producers and 81% of weak biofilm producers were Multidrug Resistance (MDR) strains. In contrast, among non-biofilm producers, only 11.8% were classified as MDR strains. Our results highlighted that Sulfamides and Glycopeptides for the major Gram-positive strains and Fluoroquinolones, Carbapenems, and Aminoglycosides for the most represented Gram-negative isolates could be the most suitable therapeutic choice for most biofilm-DRIs.


2020 ◽  
Author(s):  
Jawad Ali ◽  
Malik Owais Ullah Awan ◽  
Gulcin Akca ◽  
Iftikhar Zeb ◽  
Bilal AZ Amin ◽  
...  

AbstractAntibiotics discovery was a significant breakthrough in the field of therapeutic medicines, but the over (mis)use of such antibiotics (n parallel) caused the increasing number of resistant bacterial species at an ever-higher rate. This study was thus devised to assess the multi-drug resistant bacteria present in sanitation-related facilities in human workplaces. In this regard, samples were collected from different gender, location, and source-based facilities, and subsequent antibiotic sensitivity testing was performed on isolated bacterial strains. Four classes of the most commonly used antibiotics i.e., β-lactam, Aminoglycosides, Macrolides, and Sulphonamides, were evaluated against the isolated bacteria.The antibiotic resistance profile of different (70) bacterial strains showed that the antibiotic resistance-based clusters also followed the grouping based on their isolation sources, mainly the gender. Twenty-three bacterial strains were further selected for their 16s rRNA gene based molecular identification and for phylogenetic analysis to evaluate the taxonomic evolution of antibiotic resistant bacteria. Moreover, the bacterial resistance to Sulphonamides and beta lactam was observed to be the most and to Aminoglycosides and macrolides as the least. Plasmid curing was also performed for MDR bacterial strains, which significantly abolished the resistance potential of bacterial strains for different antibiotics. These curing results suggested that the antibiotic resistance determinants in these purified bacterial strains are present on respective plasmids. Altogether, the data suggested that the human workplaces are the hotspot for the prevalence of MDR bacteria and thus may serve the source of horizontal gene transfer and further transmission to other environments.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Jishnu Basu ◽  
Tiffany Grimes

Cystic Fibrosis is a genetic disease which causes the production of viscous mucus in airways which limits airflow and creates the perfect conditions for bacterial growth. Unfortunately, deaths due to bacterial infections in Cystic Fibrosis patients have increased as bacterial strains have developed antibiotic resistance.  Researchers have found that silver nanoparticles offer a solution to growing antibiotic resistance due to how no resistance has been developed to them in clinical trials. Current research is focusing on the bio-synthesis of silver nanoparticles which does not produce the harmful waste products seen with the industrial production of silver nanoparticles. However, there is a lack of comparative research concerning the effectiveness of silver nanoparticles produced by different microorganisms, which is what the researcher’s work addressed. The researcher’s work primarily focused on determining how effective silver nanoparticles produced by different bacterial species were at inhibiting bacterial growth. Through the collection of nanoparticles via extracellular synthesis, antimicrobial assays were conducted to determine the efficacy of silver nanoparticles produced by different microorganisms. The results indicated that silver nanoparticles produced by B. subtilis were the most effective in inhibiting bacterial growth. This provides a crucial as research in the field should increasingly focus on bacteria which utilize assimilatory nitrate reduction like B. subtilis because of the increased efficacy of silver nanoparticles produced by this method in inhibiting bacterial growth in aerobic conditions. Advances in this area could increase the efficiency of nanoparticle production and make it viable for industrial production.


Sign in / Sign up

Export Citation Format

Share Document