scholarly journals ANALYZING THE IMPACT OF RESAMPLING METHOD FOR IMBALANCED DATA TEXT IN INDONESIAN SCIENTIFIC ARTICLES CATEGORIZATION

2020 ◽  
Vol 41 (2) ◽  
pp. 133
Author(s):  
Ariani Indrawati ◽  
Hendro Subagyo ◽  
Andre Sihombing ◽  
Wagiyah Wagiyah ◽  
Sjaeful Afandi

The extremely skewed data in artificial intelligence, machine learning, and data mining cases are often given misleading results. It is caused because machine learning algorithms are designated to work best with balanced data. However, we often meet with imbalanced data in the real situation. To handling imbalanced data issues, the most popular technique is resampling the dataset to modify the number of instances in the majority and minority classes into a standard balanced data. Many resampling techniques, oversampling, undersampling, or combined both of them, have been proposed and continue until now. Resampling techniques may increase or decrease the classifier performance. Comparative research on resampling methods in structured data has been widely carried out, but studies that compare resampling methods with unstructured data are very rarely conducted. That raises many questions, one of which is whether this method is applied to unstructured data such as text that has large dimensions and very diverse characters. To understand how different resampling techniques will affect the learning of classifiers for imbalanced data text, we perform an experimental analysis using various resampling methods with several classification algorithms to classify articles at the Indonesian Scientific Journal Database (ISJD). From this experiment, it is known resampling techniques on imbalanced data text generally to improve the classifier performance but they are doesn’t give significant result because data text has very diverse and large dimensions.

Machine Learning (ML) furnishes the ability of insights on automatic recognizing patterns and determining the prediction models for the structured and unstructured data even in the absence of explicit programming instructions. Today, the impact of Artificial Intelligence (AI) has grown up to several heights, ranging from Life sciences to the Management techniques. The integration of ML led to reduce or eliminate the errors in the prediction, classification and simulation models. The objective of the paper is to represent the ML objectives, explore the various ML techniques and algorithms with its applications in the various fields.


2020 ◽  
Vol 39 (5) ◽  
pp. 6579-6590
Author(s):  
Sandy Çağlıyor ◽  
Başar Öztayşi ◽  
Selime Sezgin

The motion picture industry is one of the largest industries worldwide and has significant importance in the global economy. Considering the high stakes and high risks in the industry, forecast models and decision support systems are gaining importance. Several attempts have been made to estimate the theatrical performance of a movie before or at the early stages of its release. Nevertheless, these models are mostly used for predicting domestic performances and the industry still struggles to predict box office performances in overseas markets. In this study, the aim is to design a forecast model using different machine learning algorithms to estimate the theatrical success of US movies in Turkey. From various sources, a dataset of 1559 movies is constructed. Firstly, independent variables are grouped as pre-release, distributor type, and international distribution based on their characteristic. The number of attendances is discretized into three classes. Four popular machine learning algorithms, artificial neural networks, decision tree regression and gradient boosting tree and random forest are employed, and the impact of each group is observed by compared by the performance models. Then the number of target classes is increased into five and eight and results are compared with the previously developed models in the literature.


2020 ◽  
Vol 5 (19) ◽  
pp. 32-35
Author(s):  
Anand Vijay ◽  
Kailash Patidar ◽  
Manoj Yadav ◽  
Rishi Kushwah

In this paper an analytical survey on the role of machine learning algorithms in case of intrusion detection has been presented and discussed. This paper shows the analytical aspects in the development of efficient intrusion detection system (IDS). The related study for the development of this system has been presented in terms of computational methods. The discussed methods are data mining, artificial intelligence and machine learning. It has been discussed along with the attack parameters and attack types. This paper also elaborates the impact of different attack and handling mechanism based on the previous papers.


Author(s):  
Noor Asyikin Sulaiman ◽  
Md Pauzi Abdullah ◽  
Hayati Abdullah ◽  
Muhammad Noorazlan Shah Zainudin ◽  
Azdiana Md Yusop

Air conditioning system is a complex system and consumes the most energy in a building. Any fault in the system operation such as cooling tower fan faulty, compressor failure, damper stuck, etc. could lead to energy wastage and reduction in the system’s coefficient of performance (COP). Due to the complexity of the air conditioning system, detecting those faults is hard as it requires exhaustive inspections. This paper consists of two parts; i) to investigate the impact of different faults related to the air conditioning system on COP and ii) to analyse the performances of machine learning algorithms to classify those faults. Three supervised learning classifier models were developed, which were deep learning, support vector machine (SVM) and multi-layer perceptron (MLP). The performances of each classifier were investigated in terms of six different classes of faults. Results showed that different faults give different negative impacts on the COP. Also, the three supervised learning classifier models able to classify all faults for more than 94%, and MLP produced the highest accuracy and precision among all.


Author(s):  
Francesc López Seguí ◽  
Ricardo Ander Egg Aguilar ◽  
Gabriel de Maeztu ◽  
Anna García-Altés ◽  
Francesc García Cuyàs ◽  
...  

Background: the primary care service in Catalonia has operated an asynchronous teleconsulting service between GPs and patients since 2015 (eConsulta), which has generated some 500,000 messages. New developments in big data analysis tools, particularly those involving natural language, can be used to accurately and systematically evaluate the impact of the service. Objective: the study was intended to examine the predictive potential of eConsulta messages through different combinations of vector representation of text and machine learning algorithms and to evaluate their performance. Methodology: 20 machine learning algorithms (based on 5 types of algorithms and 4 text representation techniques)were trained using a sample of 3,559 messages (169,102 words) corresponding to 2,268 teleconsultations (1.57 messages per teleconsultation) in order to predict the three variables of interest (avoiding the need for a face-to-face visit, increased demand and type of use of the teleconsultation). The performance of the various combinations was measured in terms of precision, sensitivity, F-value and the ROC curve. Results: the best-trained algorithms are generally effective, proving themselves to be more robust when approximating the two binary variables "avoiding the need of a face-to-face visit" and "increased demand" (precision = 0.98 and 0.97, respectively) rather than the variable "type of query"(precision = 0.48). Conclusion: to the best of our knowledge, this study is the first to investigate a machine learning strategy for text classification using primary care teleconsultation datasets. The study illustrates the possible capacities of text analysis using artificial intelligence. The development of a robust text classification tool could be feasible by validating it with more data, making it potentially more useful for decision support for health professionals.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 647
Author(s):  
Meijun Shang ◽  
Hejun Li ◽  
Ayaz Ahmad ◽  
Waqas Ahmad ◽  
Krzysztof Adam Ostrowski ◽  
...  

Environment-friendly concrete is gaining popularity these days because it consumes less energy and causes less damage to the environment. Rapid increases in the population and demand for construction throughout the world lead to a significant deterioration or reduction in natural resources. Meanwhile, construction waste continues to grow at a high rate as older buildings are destroyed and demolished. As a result, the use of recycled materials may contribute to improving the quality of life and preventing environmental damage. Additionally, the application of recycled coarse aggregate (RCA) in concrete is essential for minimizing environmental issues. The compressive strength (CS) and splitting tensile strength (STS) of concrete containing RCA are predicted in this article using decision tree (DT) and AdaBoost machine learning (ML) techniques. A total of 344 data points with nine input variables (water, cement, fine aggregate, natural coarse aggregate, RCA, superplasticizers, water absorption of RCA and maximum size of RCA, density of RCA) were used to run the models. The data was validated using k-fold cross-validation and the coefficient correlation coefficient (R2), mean square error (MSE), mean absolute error (MAE), and root mean square error values (RMSE). However, the model’s performance was assessed using statistical checks. Additionally, sensitivity analysis was used to determine the impact of each variable on the forecasting of mechanical properties.


2020 ◽  
Vol 27 (6) ◽  
pp. 929-933
Author(s):  
George Demiris ◽  
Kristin L Corey Magan ◽  
Debra Parker Oliver ◽  
Karla T Washington ◽  
Chad Chadwick ◽  
...  

Abstract Objective The goal of this study was to explore whether features of recorded and transcribed audio communication data extracted by machine learning algorithms can be used to train a classifier for anxiety. Materials and Methods We used a secondary data set generated by a clinical trial examining problem-solving therapy for hospice caregivers consisting of 140 transcripts of multiple, sequential conversations between an interviewer and a family caregiver along with standardized assessments of anxiety prior to each session; 98 of these transcripts (70%) served as the training set, holding the remaining 30% of the data for evaluation. Results A classifier for anxiety was developed relying on language-based features. An 86% precision, 78% recall, 81% accuracy, and 84% specificity were achieved with the use of the trained classifiers. High anxiety inflections were found among recently bereaved caregivers and were usually connected to issues related to transitioning out of the caregiving role. This analysis highlighted the impact of lowering anxiety by increasing reciprocity between interviewers and caregivers. Conclusion Verbal communication can provide a platform for machine learning tools to highlight and predict behavioral health indicators and trends.


Author(s):  
Mohsen Kamyab ◽  
Stephen Remias ◽  
Erfan Najmi ◽  
Kerrick Hood ◽  
Mustafa Al-Akshar ◽  
...  

According to the Federal Highway Administration (FHWA), US work zones on freeways account for nearly 24% of nonrecurring freeway delays and 10% of overall congestion. Historically, there have been limited scalable datasets to investigate the specific causes of congestion due to work zones or to improve work zone planning processes to characterize the impact of work zone congestion. In recent years, third-party data vendors have provided scalable speed data from Global Positioning System (GPS) devices and cell phones which can be used to characterize mobility on all roadways. Each work zone has unique characteristics and varying mobility impacts which are predicted during the planning and design phases, but can realistically be quite different from what is ultimately experienced by the traveling public. This paper uses these datasets to introduce a scalable Work Zone Mobility Audit (WZMA) template. Additionally, the paper uses metrics developed for individual work zones to characterize the impact of more than 250 work zones varying in length and duration from Southeast Michigan. The authors make recommendations to work zone engineers on useful data to collect for improving the WZMA. As more systematic work zone data are collected, improved analytical assessment techniques, such as machine learning processes, can be used to identify the factors that will predict future work zone impacts. The paper concludes by demonstrating two machine learning algorithms, Random Forest and XGBoost, which show historical speed variation is a critical component when predicting the mobility impact of work zones.


Sign in / Sign up

Export Citation Format

Share Document