scholarly journals The Isotropic Weyl Tensor on Four-Dimensional Locally Homogeneous Pseudo-Riemannian Manifolds

Author(s):  
С.В. Клепикова ◽  
Author(s):  
S.V. Klepikova ◽  
T.P. Makhaeva

It is known that a locally homogeneous manifold can be obtained from a locally conformally homogeneous (pseudo)Riemannian manifolds by a conformal deformation if the Weyl tensor (or the Schouten-Weyl tensor in the three-dimensional case) has a nonzero squared length. Thus, the problem arises of studying (pseudo)Riemannian locally homogeneous and locally conformally homogeneous manifolds, the Weyl tensor of which has zero squared length, and itself is not equal to zero (in this case, the Weyl tensor is called isotropic). One of the important aspects in the study of such manifolds is the study of the curvature operators on them, namely, the problem of restoring a (pseudo)Riemannian manifold from a given Ricci operator. The problem of the prescribed values of the Ricci operator on 3-dimensional locally homogeneous Riemannian manifolds has been solved by O. Kowalski and S. Nikcevic. Analogous results for the one-dimensional and sectional curvature operators were obtained by D.N. Oskorbin, E.D. Rodionov, and O.P Khromova. This paper is devoted to the description of an example of studying the problem of the prescribed Ricci operator for four-dimensional locally homogeneous (pseudo) Riemannian manifolds with a nontrivial isotropy subgroup and isotropic Weyl tensor.


2014 ◽  
Vol 06 (02) ◽  
pp. 211-236 ◽  
Author(s):  
Wouter van Limbeek

We give a classification of many closed Riemannian manifolds M whose universal cover [Formula: see text] possesses a nontrivial amount of symmetry. More precisely, we consider closed Riemannian manifolds M such that [Formula: see text] has noncompact connected components. We prove that in many cases, such a manifold is as a fiber bundle over a locally homogeneous space. This is inspired by work of Eberlein (for non-positively curved manifolds) and Farb-Weinberger (for aspherical manifolds), and generalizes work of Frankel (for a semisimple group action). As an application, we characterize simply-connected Riemannian manifolds with both compact and finite volume noncompact quotients.


Sign in / Sign up

Export Citation Format

Share Document