scholarly journals S1313 Modelling the Episodes of Care for IDA Patients in a Secondary Care Centre Using Continuous-Time Multistate Markov Chain

2021 ◽  
Vol 116 (1) ◽  
pp. S605-S605
Author(s):  
Orouba Almilaji
Risks ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 37
Author(s):  
Manuel L. Esquível ◽  
Gracinda R. Guerreiro ◽  
Matilde C. Oliveira ◽  
Pedro Corte Real

We consider a non-homogeneous continuous time Markov chain model for Long-Term Care with five states: the autonomous state, three dependent states of light, moderate and severe dependence levels and the death state. For a general approach, we allow for non null intensities for all the returns from higher dependence levels to all lesser dependencies in the multi-state model. Using data from the 2015 Portuguese National Network of Continuous Care database, as the main research contribution of this paper, we propose a method to calibrate transition intensities with the one step transition probabilities estimated from data. This allows us to use non-homogeneous continuous time Markov chains for modeling Long-Term Care. We solve numerically the Kolmogorov forward differential equations in order to obtain continuous time transition probabilities. We assess the quality of the calibration using the Portuguese life expectancies. Based on reasonable monthly costs for each dependence state we compute, by Monte Carlo simulation, trajectories of the Markov chain process and derive relevant information for model validation and premium calculation.


2015 ◽  
Vol 33 (12) ◽  
pp. 2687-2700 ◽  
Author(s):  
Wai Hong Ronald Chan ◽  
Pengfei Zhang ◽  
Ido Nevat ◽  
Sai Ganesh Nagarajan ◽  
Alvin C. Valera ◽  
...  

1982 ◽  
Vol 19 (3) ◽  
pp. 692-694 ◽  
Author(s):  
Mark Scott ◽  
Barry C. Arnold ◽  
Dean L. Isaacson

Characterizations of strong ergodicity for Markov chains using mean visit times have been found by several authors (Huang and Isaacson (1977), Isaacson and Arnold (1978)). In this paper a characterization of uniform strong ergodicity for a continuous-time non-homogeneous Markov chain is given. This extends the characterization, using mean visit times, that was given by Isaacson and Arnold.


1996 ◽  
Vol 33 (3) ◽  
pp. 640-653 ◽  
Author(s):  
Tobias Rydén

An aggregated Markov chain is a Markov chain for which some states cannot be distinguished from each other by the observer. In this paper we consider the identifiability problem for such processes in continuous time, i.e. the problem of determining whether two parameters induce identical laws for the observable process or not. We also study the order of a continuous-time aggregated Markov chain, which is the minimum number of states needed to represent it. In particular, we give a lower bound on the order. As a by-product, we obtain results of this kind also for Markov-modulated Poisson processes, i.e. doubly stochastic Poisson processes whose intensities are directed by continuous-time Markov chains, and phase-type distributions, which are hitting times in finite-state Markov chains.


Sign in / Sign up

Export Citation Format

Share Document