scholarly journals Design of smart sensors for real time drinking water quality monitoring and contamination detection in water distributed mains

2017 ◽  
Vol 7 (1.1) ◽  
pp. 47 ◽  
Author(s):  
S. Kavi Priya ◽  
G. Shenbagalakshmi ◽  
T. Revathi

Drinking Water Distribution Systems facilitate to carry portable water from water resources such as reservoirs, river, and water tanks to industrial, commercial and residential consumers through complex buried pipe networks. Determining the consequences of a water contamination event is an important concern in the field of water systems security and in drinking water distribution systems. The proposed work is based on the development of low cost fuzzy based water quality monitoring system using wireless sensor networks which is capable of measuring physiochemical parameters of water quality such as pH, temperature, conductivity, oxidation reduction potential and turbidity. Based on selected parameters a sensing unit is developed along with several microsystems for analog signal conditioning, data aggregation, sensor data analysis and logging, and remote representation of data to the consumers. Finally, algorithms for fusing the real time data and decision making using fuzzy logic at local level are developed to assess the water contamination risk. Based on the water contamination level in the distribution pipeline the drinking water quality is classified as acceptable/reject/desirable. When the contamination is detected, the sensing unit with ZigBee sends signals to close the solenoid valve inside the pipeline to prevent the flow of contaminated water supply and it intimates the consumers about drinking water quality through mobile app. Experimental results indicate that this low cost real time water quality monitoring system acts as an ideal early warning system with best detection accuracy. The derived solution can also be applied to different IoT (Internet of Things) scenario such as smart cities, the city transport system etc.

2017 ◽  
Vol 3 (5) ◽  
pp. 865-874 ◽  
Author(s):  
Zhiheng Xu ◽  
Wangchi Zhou ◽  
Qiuchen Dong ◽  
Yan Li ◽  
Dingyi Cai ◽  
...  

Drinking water quality along distribution systems is critical for public health.


2011 ◽  
Vol 1 (4) ◽  
pp. 233-241 ◽  
Author(s):  
Caetano C. Dorea ◽  
Murray R. Simpson

Turbidity tubes have been considered to be the field method of choice for drinking water quality monitoring in resource-limited contexts because of their relative simplicity and low cost in comparison with conventional (nephelometric) turbidimeters. These tubes utilise the principle of visual extinction of a submerged target for turbidity determination and were therefore thought to be subject to user subjectivity, possibly affecting results. This study evaluated their performance under both field and controlled-laboratory conditions. Results from turbidity tubes can differ substantially from those obtained with conventional turbidimeters; this is of particular importance in the reporting of low turbidity (<10 NTU) measurements. These differences could be due to a combination of factors, such as: user variability, differences in calibration scales, and turbidity tube target shape and background colour. In view of their limitations, the usefulness of turbidity tubes for drinking water quality assessments and recommendations on the reporting of their results are also discussed.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
B. R. de Graaf ◽  
F. Williamson ◽  
Marcel Klein Koerkamp ◽  
J. W. Verhoef ◽  
R. Wuestman ◽  
...  

For safe supply of drinking water, water quality needs to be monitored online in real time. The consequence of inadequate monitoring can result in substantial health risks, and economic and reputational damages. Therefore, Vitens N.V., the largest drinking water company of the Netherlands, set a goal to explore and invest in the development of intelligent water supply. In order to do this Vitens N.V. has set up a demonstration network for online water quality monitoring, the Vitens Innovation Playground (VIP). With the recent innovative developments in the field of online sensoring Vitens kicked off, in 2011, its first major online sensoring program by implementing a sensor grid based on EventLab systems from Optiqua Technologies Pte Ltd in the distribution network. EventLab utilizes bulk refractive index as a generic parameter for continuous real time monitoring of changes in water quality. Key characteristics of this innovative optical sensor technology, high sensitivity generic sensors at low cost, make it ideal for deployment as an early warning system. This paper describes different components of the system, the technological challenges that were overcome, and presents performance data and conclusions from deployment of Optiqua's EventLab systems in the VIP.


Author(s):  
Muinul H. Banna ◽  
Homayoun Najjaran ◽  
Rehan Sadiq ◽  
Manuel J. Rodriguez ◽  
Syed A. Imran ◽  
...  

The miniaturised online sensors that were developed in the laboratories were for atmospheric pressure and steady state flow, but in the water distribution network neither the pressure nor the flow is steady. Many of the state of the art drinking water quality monitoring sensors can be operated well below the drinking Water Distribution System (WDS) pressure. Moreover, each of the sensors requires different flow rates. This paper discusses simulation and design of an affordable constant flow and constant outlet pressure system and shows an easy way to provide different flow rates for different sensors. The other criterion which should be met is the flow rate of the water bled (leakage) from WDS which must also be low. To meet the above criteria a 2-D model was developed to represent the constant pressure constant flow system for online water quality monitoring (WQM) sensors. Different configuration of the system is considered and the optimum design includes 1.044 m/s flow velocity which is low enough for the flow to be steady.


Author(s):  
Yu.A. Novikova ◽  
I.O. Myasnikov ◽  
A.A. Kovshov ◽  
N.A. Tikhonova ◽  
N.S. Bashketova

Summary. Introduction: Drinking water is one of the most important environmental factors sustaining life and determining human health. The goal of the Russian Federal Clean Water Project is to improve drinking water quality through upgrading of water treatment and supply systems using advanced technologies, including those developed by the military-industrial complex. The most informative and reliable sources of information for assessing drinking water quality are the results of systematic laboratory testing obtained within the framework of socio-hygienic monitoring (SGM) and production control carried out by water supply organizations. The objective of our study was to formulate approaches to organizing quality monitoring programs for centralized cold water supply systems. Materials and methods: We reviewed programs and results of drinking water quality laboratory tests performed by Rospotrebnadzor bodies and institutions within the framework of SGM in 2017–2018. Results: We established that drinking water quality monitoring in the constituent entities of the Russian Federation differs significantly in the number of monitoring points (566 in the Krasnoyarsk Krai vs 10 in Sevastopol) and measured indicators, especially sanitary and chemical ones (53 inorganic and organic substances in the Kemerovo Region vs one indicator in the Amur Region). Discussion: For a more complete and objective assessment of drinking water quality in centralized cold water supply systems, monitoring points should be organized at all stages of water supply with account for the coverage of the maximum number of people supplied with water from a particular network. Thus, the number of points in the distribution network should depend, inter alia, on the size of population served. In urban settlements with up to 10,000 inhabitants, for example, at least 4 points should be organized while in the cities with more than 3,000,000 inhabitants at least 80 points are necessary. We developed minimum mandatory lists of indicators and approaches to selecting priority indices to be monitored at all stages of drinking water supply.


2017 ◽  
Vol 2017 (4) ◽  
pp. 5598-5617
Author(s):  
Zhiheng Xu ◽  
Wangchi Zhou ◽  
Qiuchen Dong ◽  
Yan Li ◽  
Dingyi Cai ◽  
...  

2019 ◽  
Author(s):  
Jeba Anandh S ◽  
Anandharaj M ◽  
Aswinrajan J ◽  
Karankumar G ◽  
Karthik P

2012 ◽  
Vol 12 (5) ◽  
pp. 580-587 ◽  
Author(s):  
Stephen Mounce ◽  
John Machell ◽  
Joby Boxall

Safe, clean drinking water is a foundation of society and water quality monitoring can contribute to ensuring this. A case study application of the CANARY software to historic data from a UK drinking water distribution system is described. Sensitivity studies explored appropriate choice of algorithmic parameter settings for a baseline site, performance was evaluated with artificial events and the system then transferred to all sites. Results are presented for analysis of nine water quality sensors measuring six parameters and deployed in three connected district meter areas (DMAs), fed from a single water source (service reservoir), for a 1 year period and evaluated using comprehensive water utility records with 86% of event clusters successfully correlated to causes (spatially limited to DMA level). False negatives, defined by temporal clusters of water quality complaints in the pilot area not corresponding to detections, were only approximately 25%. It was demonstrated that the software could be configured and applied retrospectively (with potential for future near real time application) to detect various water quality event types (with a wider remit than contamination alone) for further interpretation.


Sign in / Sign up

Export Citation Format

Share Document