scholarly journals Peningkatan Produksi Gula Pereduksi dari Tandan Kosong Kelapa Sawit dengan Praperlakuan Asam Organik pada Reaktor Bertekanan

REAKTOR ◽  
2017 ◽  
Vol 16 (4) ◽  
pp. 199
Author(s):  
Fahriya Puspita Sari ◽  
Nissa Nurfajrin Solihat ◽  
Sita Heris Anita ◽  
Fitria Fitria ◽  
Euis Hermiati

ENHANCEMENT OF REDUCING SUGAR PRODUCTION FROM OIL PALM EMPTY FRUIT BUNCH BY PRETREATMENT USING ORGANIC ACID IN PRESSURIZED REACTOR. Organic acids are potential to create more environmentally friendly process in the pretreatment of lignocellulosic biomass for bioethanol production. This study was aimed to investigate the influence of organic acid pretreatment in reducing sugar production in a pressurized reactor with various resident times and temperatures on enzymatic hydrolysis of OPEFB. Two different organic acids (maleic acid and oxalic acid) were used in the pretreatment of oil palm empty fruit bunch (OPEFB) using a pressurized reactor. Factorial design using three different temperatures (170, 180, and 190°C) and four resident times (15, 30, 45, and 60 min) were employed, followed by enzymatic hydrolysis. Each condition conducted two repetitions. Analysis was conducted on the reducing sugar that was produced after saccharification by means of the severity factor of each pretreatment condition. Maleic acid showed higher reducing sugar yield with lower severity factor than oxalic acid with the same operating conditions. The highest yield of reducing sugars (80.84%) was obtained using maleic acid at 170 for 60 minutes with severity factor of 1.836. Keywords: bioethanol; organic acid pretreatment; pressurized reactor; severity factor; oil palm empty fruit bunches;   Abstrak Asam organik berpotensi dalam membantu proses praperlakuan dari biomassa lignoselulosa untuk memproduksi bioetanol yang ramah lingkungan. Penelitian ini bertujuan untuk mengetahui pengaruh asam organik, suhu dan waktu operasi terhadap produksi gula pereduksi dengan reaktor bertekanan pada tandan kosong kelapa sawit. Dua asam organik yang berbeda yaitu asam oksalat dan asam maleat digunakan untuk proses praperlakuan tandan kosong kelapa sawit (TKKS) dengan bantuan reaktor bertekanan. Dalam proses praperlakuan digunakan tiga suhu yang berbeda yaitu suhu 170, 180, dan 190°C dan empat waktu operasi 15, 30, 45, dan 60 min yang dilanjutkan dengan proses hidrolisis enzimatis. Setiap kondisi dilakukan dua kali pengulangan. Analisa yang digunakan adalah analisa uji gula pereduksi dan severity factor pada kondisi tiap praperlakuan. Asam maleat menunjukkan hasil yang lebih baik dengan severity factor yang lebih rendah dibandingkan menggunakan asam oksalat dengan kondisi operasi yang sama. Hasil yang didapatkan menunjukkan bahwa praperlakuan tandan kosong kelapa sawit dengan bantuan reaktor bertekanan memiliki rendemen gula pereduksi optimum sebesar 80,84% dengan menggunakan asam maleat pada suhu 170°C selama 60 menit dengan severity factor sebesar 1,836. Kata kunci: bioetanol; praperlakuan asam organik; reaktor bertekanan; severity factor; tandan kosong kelapa sawit.

2022 ◽  
Vol 429 ◽  
pp. 132452
Author(s):  
Libertus Darus ◽  
Susana Susana ◽  
Halasan Sihombing ◽  
Amaliyah Rohsari Indah Utami ◽  
Maizirwan Mel

2021 ◽  
Author(s):  
Dwini Normayulisa Putri ◽  
Meka Saima Perdani ◽  
Masafumi Yohda ◽  
Tania Surya Utami ◽  
Muhamad Sahlan ◽  
...  

Abstract Enzymatic hydrolysis of oil palm empty fruit bunch (OPEFB) that has been pretreated by modified pretreatment has been investigated in this study. The OPEFB used was pretreated by using sequential peracetic acid – alkaline peroxide solution. As the modification method, the assistance of pretreatment by ultrasound was conducted, in order to increase the enzyme accessibility. Therefore, it enhances the production of reducing sugar on the hydrolysis process. Prior to hydrolysis process, OPEFB was initially treated by using peracetic acid solution, comprise of CH3COOH (> 99%) and H2O2 (30% w/w), assisted by ultrasound for 3 hours at 35oC. Afterwards, OPEFB was treated by using alkaline peroxide solution, comprise of NaOH (40% w/w) and H2O2 (35% w/w), assisted by ultrasound for 10 hours at 35oC. OPEFB that has been pretreated was then subjected to enzymatic hydrolysis process using cellulase enzyme, in order to convert cellulose content into reducing sugar. Enzymatic hydrolysis was carried out at 50oC in a shaker incubator with 150 rpm for 48 hours. In this study, the effect of different enzyme concentration and hydrolysis time towards the sugar concentration in modified-pretreated OPEFB was observed and analyzed. Three different concentrations of enzyme were used, including 1.25, 2.5, and 5 g/L, and reducing sugar concentrations were analyzed at 30 and 45 minutes, and 1, 2, 4, 6, 24, 30, and 48 hours. Based on results, enzyme concentration has a significant effect to the production of reducing sugar. The reducing sugar concentrations obtained at the end of the hydrolysis process were 8.48, 11.06, 19.16 g/L, at the enzyme concentrations of 1.25, 2.5, and 5 g/L, respectively. At any hydrolysis time, the highest sugar concentration has been achieved on the highest enzyme concentration of 5 g/L. Moreover, the effective hydrolysis time were achieved at 6 hours, at all concentration of enzyme, since the production of reducing sugar were insignificant after 6 hours. This study showed an increase in reducing sugar production by 8.25% in the hydrolysis process using OPEFB pretreated by modified pretreatment compared to the non-modified pretreatment.


2019 ◽  
Vol 11 (6) ◽  
pp. 2673-2687 ◽  
Author(s):  
Sita Heris Anita ◽  
Fitria ◽  
Nissa Nurfajrin Solihat ◽  
Fahriya Puspita Sari ◽  
Lucky Risanto ◽  
...  

2020 ◽  
Vol 15 (3) ◽  
pp. 786-797
Author(s):  
Maktum Muharja ◽  
Nur Fadhilah ◽  
Rizki Fitria Darmayanti ◽  
Hanny Frans Sangian ◽  
Tantular Nurtono ◽  
...  

Preventing the further degradation of monomeric or oligomeric sugar into by-product during biomass conversion is one of the challenges for fermentable sugar production. In this study, the performance of subcritical water (SCW) and enzymatic hydrolysis of coconut husk toward reducing sugar production was investigated using a severity factor (SF) approach. Furthermore, the optimal condition of SCW was optimized using response surface methodology (RSM), where the composition changes of lignocellulose and sugar yield as responses. From the results, at low SF of SCW, sugar yield escalated as increasing SF value. In the enzymatic hydrolysis process, the effect of SCW pressure is a significant factor enhancing sugar yield. A maximum total sugar yield was attained on the mild SF condition of 2.86. From this work, it was known that the SF approach is sufficient parameter to evaluate the SCW and enzymatic hydrolysis of coconut husk. Copyright © 2020 BCREC Group. All rights reserved 


2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Vera BARLIANTI ◽  
Deliana DAHNUM ◽  
. MURYANTO ◽  
Eka TRIWAHYUNI ◽  
Yosi ARISTIAWAN ◽  
...  

Abstrak Sebagai salah satu Negara penghasil minyak kelapa sawit mentah (CPO), Indonesia juga menghasilkan tandan kosong kelapa sawit (TKKS) dalam jumlah besar. TKKS terdiri dari-tiga-komponen utama, yaitu selulosa, hemiselulosa, dan lignin. Pengolahan awal TKKS secara alkalindi ikuti dengan hidrolisis TKKS secara enzimatik menggunakan kombinasi enzim selulase dan β-glukosidase akan menghasilkan gula-gula yang mudah difermentasi.  Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi substrat, kon-sentrasi enzim, dan suhu selama proses hidrolisis berlangsung.  Hasil yang diperoleh menunjukkan bahwa konsentrasi gula maksimum (194,78 g/L) dicapai pada konsentrasi TKKS 20% (b/v), konsentrasi campuran enzim yang terdiri dari selulase dan β-1,4 glukosidase sebesar 3,85% (v/v), dan suhu 50oC. Perbandingan antara selulase dan β-1,4 glukosidase adalah 5:1 dengan masing-masing aktivitas enzim sebesar 144.5 FPU/mL dan 63 FPU/mL. Hasil penelitian juga menunjukkan bahwa model kinetika yang sesuai untuk proses hidrolisis TKKS secara enzimatik adalah model kinetika Shen dan Agblevor dengan reakside aktivasi enzim orde satu.  Hasil ini mendukung studi kelayakan ekonomi dalam pemanfaatan TKKS untuk produksi bioetanol.AbstractAs one of the crude palm oil producers, Indonesia also produces empty fruit bunches (EFB)in large quantities. The oil palm EFB consist of cellulose, hemicellulose and lignin. Alkaline pretreatment of EFB, followed by enzymatic hydro-lysis of cellulose using combination of cellulase and β-glucosidase enzymes produce fermentable sugars. This paper reported the effects of substrate loading, enzyme concentration, and temperature of hydrolysis process on reducing sugar production. The  maximum  sugar  concentration (194.78 g/L) was produced at 50oC using 20% (w/v) EFB and 3.85% (v/v) mixed enzymes of cellulase and β-1,4 glucosidase in volume ratio of 5:1 (v/v), with enzyme activity of 144.5 FPU/mL and 63 FPU/mL, respectively. The results also showed that the suitable kinetic model for enzymatic hydrolysis process of oil palm EFB follow Shen and Agblevor model with first order of enzyme deactivation. These results support the economic feasibility study in utilization of EFB of oil palm for bioethanol production.    


Author(s):  
Nissa Nurfajrin Solihat ◽  
Fahriya Puspita Sari ◽  
Lucky Risanto ◽  
Sita Heris Anita ◽  
Fitria Fitria ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Robinson Timung ◽  
Narendra Naik Deshavath ◽  
Vaibhav V. Goud ◽  
Venkata V. Dasu

This work was aimed at investigating the effect of process parameters on dilute acid pretreatment and enzymatic hydrolysis of spent citronella biomass (after citronella oil extraction) and sugarcane bagasse on total reducing sugar (TRS) yield. In acid pretreatment, the parameters studied were acid concentration, temperature, and time. At the optimized condition (0.1 M H2SO4, 120°C, and 120 min), maximum TRS obtained was 452.27 mg·g−1and 487.50 mg·g−1for bagasse and citronella, respectively. Enzymatic hydrolysis of the pretreated biomass usingTrichoderma reesei26291 showed maximum TRS yield of 226.99 mg·g−1for citronella and 282.85 mg·g−1for bagasse at 10 FPU, 50°C, and 48 hr. The maximum crystallinity index (CI) of bagasse and citronella after acid pretreatment obtained from X-ray diffraction analysis was 64.41% and 56.18%, respectively. Decreased CI after enzymatic hydrolysis process to 37.28% and 34.16% for bagasse and citronella, respectively, revealed effective conversion of crystalline cellulose to glucose. SEM analysis of the untreated and treated biomass revealed significant hydrolysis of holocellulose and disruption of lignin.


2021 ◽  
Vol 5 (2) ◽  
pp. 289-294
Author(s):  
Zeenat Ibrahim Saulawa ◽  
Lawal Nura ◽  
Muntari Bala ◽  
Abdullahi A. Iman

The effectiveness of alkaline hydrogen peroxide as a suitable choice of pretreatment for the conversion of millet husk to reducing sugars using cellulase enzyme for hydrolysis and subsequent ethanol production was determined. The effects of three variables on reducing sugar production from millet husk were determined using one factor at a time (OFAT) method namely; peroxide concentration, pretreatment time and pretreatment temperature. From the results, it was observed that a significant (P<0.05) amount of reducing sugars were lost during pretreatment of millet husk. The untreated group which was only physically pretreated (milled) however yielded a significantly higher (P<0.05) reducing sugar concentration of 10.67mg/ml after enzymatic hydrolysis while the highest reducing sugar concentration of 4.82mg/ml was obtained using 0.375%v/v peroxide concentration for 60minutes at 250C. Therefore, pretreatment of biomass with alkaline hydrogen peroxide may be more suitable for feedstock with high lignin contents than millet husk.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 787 ◽  
Author(s):  
Saleem Ethaib ◽  
Rozita Omar ◽  
Mustapa Kamal Siti Mazlina ◽  
Awang Biak Dayang Radiah

This study aims to evaluate the sugar yield from enzymatic hydrolysis and the interactive effect pretreatment parameters of microwave-assisted pretreatment on glucose and xylose. Three types of microwave-assisted pretreatments of sago palm bark (SPB) were conducted for enzymatic hydrolysis, namely: microwave-sulphuric acid pretreatment (MSA), microwave-sodium hydroxide pretreatment (MSH), and microwave-sodium bicarbonate (MSB). The experimental design was done using a response surface methodology (RSM) and Box–Behenken Design (BBD). The pretreatment parameters ranged from 5–15% solid loading (SL), 5–15 min of exposure time (ET), and 80–800 W of microwave power (MP). The results indicated that the maximum total reducing sugar was 386 mg/g, obtained by MSA pretreatment. The results also illustrated that the higher glucose yield, 44.3 mg/g, was found using MSH pretreatment, while the higher xylose yield, 43.1 mg/g, resulted from MSA pretreatment. The pretreatment parameters MP, ET, and SL showed different patterns of influence on glucose and xylose yield via enzymatic hydrolysis for MSA, MSH, and MSB pretreatments. The analyses of the interactive effect of the pretreatment parameters MP, ET, and SL on the glucose yield from SPB showed that it increased with the high MP and longer ET, but this was limited by low SL values. However, the analysis of the interactive effect of the pretreatment parameters on xylose yields revealed that MP had the most influence on the xylose yield for MSA, MSH, and MSB pretreatments.


Sign in / Sign up

Export Citation Format

Share Document