Material design and device fabrication for high-performance non-fullerene organic photovoltaics

Author(s):  
Fujin Bai
2020 ◽  
Vol 8 ◽  
Author(s):  
Dingding Qiu ◽  
Muhammad Abdullah Adil ◽  
Kun Lu ◽  
Zhixiang Wei

Bulk heterojunction (BHJ) organic solar cells (OSCs) can be regarded as one of the most promising energy generation technologies for large-scale applications. Despite their several well-known drawbacks, the devices where polymers are employed as the donor are still leading the OSC universe in terms of performance. Such performance generally depends upon various critical factors such as the crystallinity of the material, the crystallization process during the film formation, and also the final film morphology. Despite a few reviews on the structure of the polymer donor materials and device performance, not enough attention has been paid toward the crystallinity problem. Herein, the structure and crystallinity of the representative polymer donor materials and the corresponding device properties have been briefly reviewed. Furthermore, several typical methods for controlling the crystallinity of materials have been summarized and illustrated as well. Moreover, the obstacles lying in the way of successful commercialization of such polymer solar cells have been systematically discussed. The in-depth interpretation of the crystallinity of the polymer donors in this article may stimulate novel ideas in material design and device fabrication.


Author(s):  
S. Yegnasubramanian ◽  
V.C. Kannan ◽  
R. Dutto ◽  
P.J. Sakach

Recent developments in the fabrication of high performance GaAs devices impose crucial requirements of low resistance ohmic contacts with excellent contact properties such as, thermal stability, contact resistivity, contact depth, Schottky barrier height etc. The nature of the interface plays an important role in the stability of the contacts due to problems associated with interdiffusion and compound formation at the interface during device fabrication. Contacts of pure metal thin films on GaAs are not desirable due to the presence of the native oxide and surface defects at the interface. Nickel has been used as a contact metal on GaAs and has been found to be reactive at low temperatures. Formation Of Ni2 GaAs at 200 - 350C is reported and is found to grow epitaxially on (001) and on (111) GaAs, but is shown to be unstable at 450C. This paper reports the investigations carried out to understand the microstructure, nature of the interface and composition of sputter deposited and annealed (at different temperatures) Ni-Sb ohmic contacts on GaAs by TEM. Attempts were made to correlate the electrical properties of the films such as the sheet resistance and contact resistance, with the microstructure. The observations are corroborated by Scanning Auger Microprobe (SAM) investigations.


2021 ◽  
Author(s):  
Lin Lin ◽  
Zeping Huang ◽  
Yuanqi Luo ◽  
Tingen Peng ◽  
Baitian He ◽  
...  

The synthesis and application as a cathode interlayer in organic photovoltaics of a fluorene derivative with pyridyl functional chains are presented.


ChemSusChem ◽  
2021 ◽  
Author(s):  
Yingping Zou ◽  
Xiang Xu ◽  
Xiaoyan Luo ◽  
Qingya Wei ◽  
Jun Yuan ◽  
...  

2013 ◽  
Vol 15 (48) ◽  
pp. 20966 ◽  
Author(s):  
Kyle A. Luck ◽  
Tejas A. Shastry ◽  
Stephen Loser ◽  
Gabriel Ogien ◽  
Tobin J. Marks ◽  
...  

2020 ◽  
Author(s):  
Jess Wade ◽  
James Hilfiker ◽  
Jochen Brandt ◽  
Letizia Liirò-Peluso ◽  
Li Wan ◽  
...  

<div><div><div><p>Polymer thin films that emit and absorb circularly polarised light have been demonstrated with the promise of achieving important technological advances; from efficient, high-performance displays, to 3D imaging and all-organic spintronic devices. However, the origin of the large chiroptical effects in such films has, until now, remained elusive. We investigate the emergence of such phenomena in achiral polymers blended with a chiral small-molecule additive (1-aza[6]helicene) and intrinsically chiral-sidechain polymers using a combination of spectroscopic methods and structural probes. We show that – under conditions relevant for device fabrication – the large chiroptical effects are caused by coupling of electric and magnetic transition dipole moments (natural optical activity), not structural chirality as previously assumed, and may occur because of local order in a cylinder blue phase-type organisation. This disruptive mechanistic insight into chiral polymer thin films will offer new approaches towards chiroptical materials development after almost three decades of research in this area.</p></div></div></div>


2021 ◽  
Author(s):  
SWAPNIL BAMANE ◽  
PRASHIK GAIKWAD ◽  
MATTHEW RADUE ◽  
S. GOWTHAM ◽  
GREGORY ODEGARD

There is a wide application of carbon nanotube (CNT) based composite materials for structural applications in the aerospace industry. CNT composites are often manufactured with high performance polymer resins as a matrix. Resin wettability with specific reinforcement types is a key parameter in manufacturing CNT composites. Wettability of a liquid resin and reinforcement combination is often measured and quantified by the contact angle. Various experimental methods have been developed to determine the contact angle which can be expensive while working with high-performance resins and CNT materials such as CNT yarns, bundles, or forests. Fortunately, computational simulations can greatly facilitate CNT composite material design by efficiently predicting the contact angle for a wide range of resins. In this study, a molecular dynamics (MD) framework is developed to determine the contact angle value of high-performance polymer resins on aromatic and aliphatic carbon surfaces (Figure 1). It is determined that monomer length and functional groups have a significant impact on the contact angle. Further, based on these results, qualitative deductions of contact angle values of highperformance resins on CNT materials with amorphous carbon content are made.


ACS Nano ◽  
2021 ◽  
Author(s):  
Yepin Zhao ◽  
Pei Cheng ◽  
Hangbo Yang ◽  
Minhuan Wang ◽  
Dong Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document