Mathematical modelling of energy harvesting in piezo embedded electric vehicle tyres together with self-health assessment of suspension system

2018 ◽  
Vol 10 (2) ◽  
pp. 161 ◽  
Author(s):  
Raziq Yaqub ◽  
Kaveh Heidary
2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Saiful Anuar Abu Bakar ◽  
Ryosuke Masuda ◽  
Hiromu Hashimoto ◽  
Takeshi Inaba ◽  
Hishamuddin Jamaluddin ◽  
...  

This paper presents vehicle’s ride comfort performance evaluation after the conversion into an electric vehicle (EV) and the possible ride comfort improvement by an active suspension system have been investigated. The evaluations were done using a validated 7 degrees of freedom of vehicle’s ride model. The mathematical modelling of the vehicle’s ride as well as its validations was developed in order to predict the vehicle’s ride behaviours. The model was then integrated with the active suspension system in order to improve the EV conversion’s ride comfort performance. It was found that the modifications towards an EV conversion do not affect vehicle’s ride comfort performance significantly, except it changes only the vehicle’s vertical displacement, pitch rate and pitch angle responses. However, further application of an active suspension system in EV conversion was found to be able to improve all of the observed responses for ride comfort performance of an EV conversion by overall improvement of 71.1 percent.


Author(s):  
Jacek Caban ◽  
Grzegorz Litak ◽  
Bartłomiej Ambrożkiewicz ◽  
Leszek Gardyński ◽  
Paweł Stączek ◽  
...  

The automotive industry faces huge challenge in environmental protection by reducing fossil fuels and energy consumption by developing various practical solutions in energy harvesting. The current analysis is related to the diesel engine power supply system in a passenger off-road vehicle for application of the piezoelectric energy harvesting system. Experimental tests were carried out for the three constant rotational speed values - 800, 1000 and 1500 rpm. The results pertained to operational and simulation tests of available power supply options from the engine suspension system in the vehicle, e.g. to power sensors supervising the engine’s operation or other small electrical devices in the vehicle. The simulations of output voltage were conducted by means of a nonlinear model with a resonator coupled to a piezoelectric elastic beam deformed in the magnetic field to improve the band of frequency transducing kinetic mechanic energy into electric energy.


2020 ◽  
Vol 260 ◽  
pp. 114180 ◽  
Author(s):  
Guimin Long ◽  
Fei Ding ◽  
Nong Zhang ◽  
Jie Zhang ◽  
An Qin

Vibration ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 162-173
Author(s):  
Urvesh Kabariya ◽  
Sagil James

Suspension dampers are extremely critical for modern automobiles for absorbing vibrational energy while in operation. For years now, the viscous passive damper has been dominant. However, there is a constant need to improve and revolutionize the damping technology to adapt to modern road conditions and for better performance. Controlled shock absorbers capable of adapting to uneven road profiles are required to meet this challenge and enhance the passenger comfort level. Among the many types of modern damping solutions, magnetorheological (MR) dampers have gained prominence, considering their damping force control capability, fast adjustable response, and low energy consumption. Advancements in energy-harvesting technologies allow for the regeneration of a portion of energy dissipated in automotive dampers. While the amount of regenerated energy is often insufficient for regular automobiles, it could prove to be vital to support lightweight battery-operated vehicles. In battery-operated vehicles, this regenerated energy can be used for powering several secondary systems, including lighting, heating, air conditioning, and so on. This research focuses on developing a hybrid smart suspension system that combines the MR damping technology along with an electromagnetic induction (EMI)-based energy-harvesting system for applications in lightweight battery-operated vehicles. The research involves the extensive designing, numerical simulation, fabrication, and testing of the proposed smart suspension system. The development of the proposed damping system would help advance the harvesting of clean energy and enhance the performance and affordability of future battery-operated vehicles.


2018 ◽  
Vol 229 ◽  
pp. 672-699 ◽  
Author(s):  
Mohamed A.A. Abdelkareem ◽  
Lin Xu ◽  
Mohamed Kamal Ahmed Ali ◽  
Ahmed Elagouz ◽  
Jia Mi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document