The Significant Variables Of Effluent Constructed Wetlands Treated Domestic Wastewater By A Subset Regression Model

Author(s):  
Amjad Hussein ◽  
Ali Sadig
2021 ◽  
Vol 170 ◽  
pp. 106369
Author(s):  
Kemal Gunes ◽  
Fabio Masi ◽  
Selma Ayaz ◽  
Bilal Tuncsiper ◽  
Mehmet Besiktas

Water ◽  
2016 ◽  
Vol 8 (9) ◽  
pp. 365 ◽  
Author(s):  
Eleanor Butterworth ◽  
Andrew Richards ◽  
Mark Jones ◽  
Gabriella Mansi ◽  
Ezio Ranieri ◽  
...  

1999 ◽  
Vol 40 (3) ◽  
pp. 273-281 ◽  
Author(s):  
Trond Mæhlum ◽  
Per Stålnacke

This paper outlines the influence of temperature, flow rate and input concentrations on the treatment efficiency of organic matter and nutrients in constructed wetlands (CWs). Three integrated 10 PE systems with horizontal subsurface flow (HSF) treating domestic wastewater are described. Particular attention is devoted to: (1) aerobic pre-treatment in vertical-flow filters, (2) filter media with high phosphorus (P) sorption capacity, and (3) the treatment efficiency during winters. Aerobic pre-treatment followed by CW units including P sorption media removed most organic matter (BOD> 75%), P (> 90%) and total and ammonia N (40-80%). P retention was relatively stable in wetland filters, both with lightweight aggregates and ferruginous sand during 3-6 years of monitoring. Iron-rich sand from Bsh and Bs horizons of ferro-humic podzols was efficient for P sorption, but removal efficiencies of COD, TOC and SS were negative. The differences in efficiency between cold and warm periods were less than 10 percentage points for all parameters. It is anticipated that temperature effects are partially compensated by the large hydraulic retention time. The findings suggest that HSF systems do not require vegetation.


2018 ◽  
Vol 78 (12) ◽  
pp. 2639-2646 ◽  
Author(s):  
Anita M. Rugaika ◽  
Damian Kajunguri ◽  
Rob Van Deun ◽  
Bart Van der Bruggen ◽  
Karoli N. Njau

Abstract Pilot-scale constructed wetlands (CWs) that allowed wastewater to flow with high interstitial velocities in a controlled environment were used to evaluate the possibility of using mass transfer approach to design horizontal subsurface flow constructed wetlands (HSSF-CWs) treating waste stabilisation ponds (WSPs) effluent. Since CW design considers temperature which is irrelevant in tropics, mass transfer approach could improve the design. HSSF-CWs were operated in batch recycle mode as continuous stirred tank reactors (CSTR) at different interstitial velocities. The overall removal rate constants of chemical oxygen demand (COD) at various interstitial velocities were evaluated in mesocosms that received pretreated domestic wastewater. The mean overall removal rate constants were 0.43, 0.69, 0.74 and 0.73 d−1 corresponding to interstitial velocities of 15.43, 36, 56.57 and 72 md−1, respectively. Results showed that the interstitial velocities up to 36 md−1 represented a range where mass transfer effect was significant and, above it, insignificant to the COD removal process. Since WSPs effluent has high flow rates and low organic load, it is possible to induce high interstitial velocities in a HSSF-CW treating this effluent, without clogging and overflow. The performance of these HSSF for tertiary treatment in tropical areas could be improved by considering flow velocity when designing.


2015 ◽  
Vol 10 (1) ◽  
pp. 110-123 ◽  
Author(s):  
Alejandra S. Méndez-Mendoza ◽  
Ricardo Bello-Mendoza ◽  
David Herrera-López ◽  
Gamaliel Mejía-González ◽  
Angeles Calixto-Romo

In developing countries located in tropical and subtropical regions, the use of ornamental plant species in constructed wetlands (CWs) could add benefits to the treatment of wastewater. This paper presents a study on the efficiency of using plants of economic importance in South Mexico (Heliconia stricta, Heliconia psittacorum and Alpinia purpurata) within an anaerobic digester horizontal subsurface CW system for treating domestic wastewater. The CW with H. psittacorum showed the highest level of removal of biochemical oxygen demand (48%), chemical oxygen demand (64%), total phosphorus (39%) and total nitrogen (39%). This species and H. stricta (which showed slightly lower percentages of removal) may be a viable alternative to using macrophytes in CW in tropical areas such as Chiapas, Mexico.


Sign in / Sign up

Export Citation Format

Share Document