Gamma, X-ray and neutron radiation shielding properties of Al, Si, K, Na, B and Pb polymer concretes

Author(s):  
H.C. Manjunatha ◽  
L. Seenappa
Author(s):  
Ayano Shanko, MD, Et. al.

The aim of the research is to estimate the X-ray shielding properties of different glass systems using Monte Carlo Simulation. X-ray glass is also known as radiation shielding glass. Glass provides protection against the absorption of energy radiation. The shielding layer is formed by a high concentration of lead and barium. The mass attenuation coefficient, the effective atomic number and the effective electron density are used to determine the position of gamma-ray photons in matter. Shield characterization in terms of mass attenuation coefficient (μm), transmission fraction (T), effective atomic numbers (Zeff), half-value layer (HVL) and exposure build-up. factor (EBF) of a glass system is estimated by the Monte Carlo Simulation. The random sampling and statistical analysis are computed using the monte carlo simulation. Various external factors are considered as the input parameters. The different composition of the glass will be examined using the Monte Carlo simulation and the shielding capability would be determined for the various samples.


2019 ◽  
Vol 45 (17) ◽  
pp. 23681-23689 ◽  
Author(s):  
Berna Oto ◽  
Esra Kavaz ◽  
Halil Durak ◽  
Aydın Aras ◽  
Zekiye Madak

2019 ◽  
pp. 19-25 ◽  
Author(s):  
I. Romanenko ◽  
M. Holiuk ◽  
A. Nosovsky ◽  
T. Vlasenko ◽  
V. Gulik

It is necessary to have reliable radiation protection for safe operation of different radiation sources. Radiation shielding properties have been studied for a long time both in our country and abroad. However, there is a strong necessity to develop new composite materials, which will provide protection against radiation and have improved mechanical and economic characteristics. The paper describes a new composite material for neutron radiation shielding properties based on heavy concrete with serpentinite aggregate and with basalt-boron fiber with different concentrations of fiber boron oxide for using in biological shielding in nuclear industry. Protective properties of the new composite material were investigated with different neutron sources: 1) neutrons with 14 MeV energy; 2) fast fission neutrons for U-235; 3) fast fission neutrons for U-235 after passing a water layer. The simulation of the neutron radiation in presented composite material with adding crushed stone aggregate and serpentinite aggregate is performed by Monte Carlo Serpent code. It is shown that basalt-boron fibers in concrete improve the protective properties of concrete against neutron irradiation for neutrons with different energies, but the most effective is the addition of a basalt-boron fiber in the case of thermal neutrons. This research was supported by Horizon 2020 ERA-NET Support Programme, Research Grant Agreement No 7.9-3/18/7 (“Development of Boron-Infused Basalt-Fiber Reinforced Concrete for Nuclear and Radioactive Waste Management Applications”). Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a joint programme of the members of the EUROfusion consortium (2014-2020), Work Package PMI. Also, this research was carried out with the financial support of the IAEA, within the terms and conditions of the Research Contract20638 in the framework of the Coordinated Research Project (CRP) “Accelerator Driven Systems (ADS) Applications and Use of Low-Enriched Uranium in ADS (T33002)’’ within the Project “The Two-Zone Subcritical Systems with Fast and Thermal Neutron Spectra for Transmutation of Minor Actinides and Long-Lived Fission Products”.


2007 ◽  
Vol 52 (4) ◽  
pp. 1035-1039
Author(s):  
Peter Song ◽  
Joe Holder ◽  
Bruce Young ◽  
Dan Kalantar ◽  
David Eder ◽  
...  

2020 ◽  
Author(s):  
S. Kiatwattanacharoen ◽  
P. Srimaroeng ◽  
S. Kothan ◽  
C. Jumpee ◽  
H. J. Kim ◽  
...  

2020 ◽  
Vol 12 ◽  
pp. 120005
Author(s):  
Ahmed ABDEL-LATIF ◽  
Maged Kassab ◽  
M. I. Sayyed ◽  
H. O. Tekin

The purpose of this study is to develop a low cost, locally produced concrete mixture with optimum marble content. The resulting mixture would have enhanced strength properties compared to the non-marble reference concrete, and improved radiation shielding properties. To accomplish these goals five concrete mixtures were prepared, containing 0, 5, 10, 15, and 20% marble waste powder as a cement replacement on the basis of weight.These samples were subjected to a compressive strength test. The shielding parameters such as mass attenuation coefficients μm, mean free path MFP, effective atomic number $Z_{eff}$ and exposure build-up factors EBF were measured, and results were compared with those obtained using the WinXcom program and MCNPX code in the photon energy range of 0.015 - 3 MeV. Moreover, the macroscopic fast neutron removal cross-section (neutron attenuation coefficient) was calculated and the results presented. The results show that the sample which contains 10% marble has the highest compressive strength and potentiallygood gamma ray and neutron radiation shielding properties.


2016 ◽  
Vol 22 (2) ◽  
pp. 41-47 ◽  
Author(s):  
Szymon Domański ◽  
Michał A. Gryziński ◽  
Maciej Maciak ◽  
Łukasz Murawski ◽  
Piotr Tulik ◽  
...  

Abstract This paper presents the set of procedures developed in Radiation Protection Measurements Laboratory at National Centre for Nuclear Research for evaluation of shielding properties of high performance concrete. The purpose of such procedure is to characterize the material behaviour against gamma and neutron radiation. The range of the densities of the concrete specimens was from 2300 to 3900 kg/m3. The shielding properties against photons were evaluated using 137Cs and 60Co sources. The neutron radiation measurements have been performed by measuring the transmitted radiation from 239PuBe source. Scattered neutron radiation has been evaluated using the shadow cone technique. A set up of ionization chambers was used during all experiments. The gamma dose was measured using C-CO2 ionization chamber. The neutron dose was evaluated with recombination chamber of REM-2 type with appropriate recombination method applied. The method to distinguish gamma and neutron absorbed dose components in mixed radiation fields using twin detector method was presented. Also, recombination microdosimetric method was applied for the obtained results. Procedures to establish consecutive half value layers and tenth value layers (HVL and TVL) for gamma and neutron radiation were presented. Measured HVL and TVL values were linked with concrete density to highlight well known dependence. Also, influence of specific admixtures to concrete on neutron attenuation properties was studied. The results confirmed the feasibility of approach for the radiation shielding investigations.


2019 ◽  
Vol 5 ◽  
pp. 22
Author(s):  
Iryna Romanenko ◽  
Maryna Holiuk ◽  
Pavlo Kutsyn ◽  
Iryna Kutsyna ◽  
Hennadii Odynokin ◽  
...  

A new composite material with neutron radiation shielding properties is presented. This fiber reinforced concrete material incorporates basalt-boron fiber, with different concentrations of boron oxide in fiber, and is applicable to nuclear energy and nuclear waste management. The methodology for production of boron oxide (B2O3) infused basalt fiber has been developed. First experimental samples of basalt boron fiber containing 6% of B2O3 and 12% B2O3 have been produced in laboratory conditions. The concrete samples reinforced by two types of basalt-boron fiber with different dosages have been prepared for neutron experiment. The neutron experimental investigations on radiation shielding properties of concrete reinforced by basalt-boron fiber have been performed by means of Pu-Be neutron source. The prepared samples have been tested in the course of several series of tests. It is shown that basalt-boron fibers in concrete improve neutron radiation shielding properties for neutrons with different energies, but it appears to be most effective when it comes to thermal neutrons.


Sign in / Sign up

Export Citation Format

Share Document