Interior and boundary regularity results for strongly nonhomogeneous p,q-fractional problems
Abstract In this article, we deal with the global regularity of weak solutions to a class of problems involving the fractional ( p , q ) {(p,q)} -Laplacian, denoted by ( - Δ ) p s 1 + ( - Δ ) q s 2 {(-\Delta)^{s_{1}}_{p}+(-\Delta)^{s_{2}}_{q}} for s 2 , s 1 ∈ ( 0 , 1 ) {s_{2},s_{1}\in(0,1)} and 1 < p , q < ∞ {1<p,q<\infty} . We establish completely new Hölder continuity results, up to the boundary, for the weak solutions to fractional ( p , q ) {(p,q)} -problems involving singular as well as regular nonlinearities. Moreover, as applications to boundary estimates, we establish a new Hopf-type maximum principle and a strong comparison principle in both situations.