scholarly journals Interior and boundary regularity results for strongly nonhomogeneous p,q-fractional problems

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jacques Giacomoni ◽  
Deepak Kumar ◽  
Konijeti Sreenadh

Abstract In this article, we deal with the global regularity of weak solutions to a class of problems involving the fractional ( p , q ) {(p,q)} -Laplacian, denoted by ( - Δ ) p s 1 + ( - Δ ) q s 2 {(-\Delta)^{s_{1}}_{p}+(-\Delta)^{s_{2}}_{q}} for s 2 , s 1 ∈ ( 0 , 1 ) {s_{2},s_{1}\in(0,1)} and 1 < p , q < ∞ {1<p,q<\infty} . We establish completely new Hölder continuity results, up to the boundary, for the weak solutions to fractional ( p , q ) {(p,q)} -problems involving singular as well as regular nonlinearities. Moreover, as applications to boundary estimates, we establish a new Hopf-type maximum principle and a strong comparison principle in both situations.

2020 ◽  
Vol 10 (1) ◽  
pp. 895-921
Author(s):  
Daniele Cassani ◽  
Luca Vilasi ◽  
Youjun Wang

Abstract In this paper we study a class of one-parameter family of elliptic equations which combines local and nonlocal operators, namely the Laplacian and the fractional Laplacian. We analyze spectral properties, establish the validity of the maximum principle, prove existence, nonexistence, symmetry and regularity results for weak solutions. The asymptotic behavior of weak solutions as the coupling parameter vanishes (which turns the problem into a purely nonlocal one) or goes to infinity (reducing the problem to the classical semilinear Laplace equation) is also investigated.


Sign in / Sign up

Export Citation Format

Share Document