Global Existence and Blowup for the Cubic Nonlinear Klein-Gordon Equations in Three Space Dimensions

2010 ◽  
Vol 10 (2) ◽  
Author(s):  
Jian Zhang ◽  
Zaihui Gan ◽  
Boling Guo

AbstractIn this paper, we apply a cross-constrained variational method to study the classic nonlinear Klein-Gordon equation with cubic nonlinearity in three space dimensions. By constructing a type of cross-constrained variational problem and establishing the so-called cross invariant manifolds, we obtain a sharp threshold for blowup and global existence of the solution to the equation under study which is different from that in [10] . On the other hand, we give an answer to the question that how small the initial data have to be for the global solutions to exist.

2008 ◽  
Vol 50 (3) ◽  
pp. 467-481 ◽  
Author(s):  
ZAIHUI GAN ◽  
JIAN ZHANG

AbstractIn this paper, we put forward a cross-constrained variational method to study the non-linear Klein–Gordon equations with an inverse square potential in three space dimensions. By constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow, we establish some new types of invariant sets for the equation and derive a sharp threshold of blowup and global existence for its solution. Finally, we give an answer to the question how small the initial data are for the global solution to exist.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Wen-Yi Huang ◽  
Wen-Li Chen

This paper is concerned with the nonlinear Klein-Gordon equation with damping term and nonnegative potentials. We introduce a family of potential wells and discuss the invariant sets and vacuum isolating behavior of solutions. Using the potential well argument, we obtain a new existence theorem of global solutions and a blow-up result for solutions in finite time.


Filomat ◽  
2016 ◽  
Vol 30 (3) ◽  
pp. 831-839 ◽  
Author(s):  
M. Dimova ◽  
N. Kolkovska ◽  
N. Kutev

A revised version of the concavity method of Levine, based on a new ordinary differential inequality, is proposed. Necessary and sufficient condition for nonexistence of global solutions of the inequality is proved. As an application, finite time blow up of the solution to Klein-Gordon equation with arbitrary positive initial energy is obtained under very general structural conditions.


1994 ◽  
Vol 09 (01) ◽  
pp. 19-27 ◽  
Author(s):  
R.C. ARCURI ◽  
B.F. SVAITER ◽  
N.F. SVAITER

The upper and lower quadrants of flat space-time can be described using the Milne coordinate system. The Klein-Gordon equation of a scalar field in such a coordinate system admits at least two sets of solutions. Based on the Feynman propagator behavior it is shown that only one of the two sets gives the conventional interpretation of quantum field theory, based on a Fock space. Therefore, discarding the other set, one can still keep the Milne coordinate system.


2017 ◽  
Vol 14 (04) ◽  
pp. 591-625 ◽  
Author(s):  
Yue Ma

In this paper and its successor, we make an application of the hyperboloidal foliation method in [Formula: see text] space-time dimension. After the establishment of some technical tools in this paper, we will prove further the global existence of small regular solution to a class of hyperbolic system composed by a wave equation and a Klein–Gordon equation with null couplings. Our method belongs to vector field method and, more precisely, is a combination of the normal form and the hyperboloidal foliation method.


Sign in / Sign up

Export Citation Format

Share Document