scholarly journals An adaptive stepsize algorithm for the numerical solving of initial-value problems

2015 ◽  
Vol 23 (1) ◽  
pp. 185-198
Author(s):  
Romulus Militaru

Abstract The present paper focuses on the efficient numerical solving of initial-value problems (IVPs) using digital computers and one-step numerical methods. We start from considering that the integration stepsize is the crucial factor in determining the number of calculations required and the amount of work involved to obtain the approximate values of the exact solution of a certain problem for a given set of points, within a prescribed computational accuracy, is proportional to the number of accomplished iterations. We perform an analysis of the local truncation error and we derive an adaptive stepsize algorithm which coupled with a certain one-step numerical method makes the use of this structure more computationally effective and insures that the estimated values of the exact solution are in agreement with an imposed accuracy. We conclude with numerical computations proving the efficiency of the proposed step selection algorithm.

Author(s):  
Bohdan Datsko ◽  
Myroslaw Kutniv ◽  
Andriy Kunynets ◽  
Andrzej Włoch

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Yong-Hong Fan ◽  
Lin-Lin Wang

We propose a new algorithm for solving the terminal value problems on a q-difference equations. Through some transformations, the terminal value problems which contain the first- and second-order delta-derivatives have been changed into the corresponding initial value problems; then with the help of the methods developed by Liu and H. Jafari, the numerical solution has been obtained and the error estimate has also been considered for the terminal value problems. Some examples are given to illustrate the accuracy of the numerical methods we proposed. By comparing the exact solution with the numerical solution, we find that the convergence speed of this numerical method is very fast.


2007 ◽  
Author(s):  
Higinio Ramos ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras

Author(s):  
Y. Skwame ◽  
J. Sabo ◽  
M. Mathew

A general one-step hybrid block method with equidistant of order 6 has been successfully developed for the direct solution of second order IVPs in this article. Numerical analysis shows that the developed method is consistent and zero-stable which implies its convergence. The analysis of the new method is examined on two highly and mildly stiff second-order initial value problems to illustrate the efficiency of the method. It is obvious that our method performs better than the existing method within which we compare our result with. Hence, the approach is an adequate one for solving special second order IVPs.


Sign in / Sign up

Export Citation Format

Share Document