scholarly journals Existence and uniqueness of solution for a class of nonlinear degenerate elliptic equation in weighted Sobolev spaces

2017 ◽  
Vol 9 (1) ◽  
pp. 26-44
Author(s):  
Albo Carlos Cavalheiro

AbstractIn this work we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations$$\matrix{{\Delta {\rm{(v}}({\rm{x}})\left| {\Delta {\rm{u}}} \right|^{{\rm{r}} - 2} \Delta {\rm{u}}) - \sum\limits_{{\rm{j}} = 1}^{\rm{n}} {{\rm{D}}_{\rm{j}} [{\rm{w}}_1 ({\rm{x}}){\cal{A}}_{\rm{j}} ({\rm{x}},{\rm{u}},\nabla {\rm{u}})]} } \hfill \cr { + \;{\rm{b}}({\rm{x}},{\rm{u}},\nabla {\rm{u}})\;{\rm{w}}_2 ({\rm{x}}) = {\rm{f}}_0 ({\rm{x}}) - \sum\limits_{{\rm{j}} = 1}^{\rm{n}} {{\rm{D}}_{\rm{j}} {\rm{f}}_{\rm{j}} ({\rm{x}}),\;\;\;\;\;{\rm{in}}\;\Omega } }}$$in the setting of the Weighted Sobolev Spaces.

Author(s):  
Albo Carlos Cavalheiro

In this work we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin{align} {\Delta}(v(x)\, {\vert{\Delta}u\vert}^{p-2}{\Delta}u) &-\sum_{j=1}^n D_j{\bigl[}{\omega}_1(x) \mathcal{A}_j(x, u, {\nabla}u){\bigr]}+ b(x,u,{\nabla}u)\, {\omega}_2(x)\\ & = f_0(x) - \sum_{j=1}^nD_jf_j(x), \ \ {\rm in } \ \ {\Omega} \end{align} in the setting of the weighted Sobolev spaces.


2019 ◽  
Vol 5 (2) ◽  
pp. 164-178
Author(s):  
Albo Carlos Cavalheiro

AbstractIn this paper we are interested in the existence of solutions for Dirichlet problem associated with the degenerate nonlinear elliptic equations\left\{ {\matrix{ { - {\rm{div}}\left[ {\mathcal{A}\left( {x,\nabla u} \right){\omega _1} + \mathcal{B}\left( {x,u,\nabla u} \right){\omega _2}} \right] = {f_0}\left( x \right) - \sum\limits_{j = 1}^n {{D_j}{f_j}\left( x \right)\,\,{\rm{in}}} \,\,\,\,\,\Omega ,} \hfill \cr {u\left( x \right) = 0\,\,\,\,{\rm{on}}\,\,\,\,\partial \Omega {\rm{,}}} \hfill \cr } } \right.in the setting of the weighted Sobolev spaces.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Duan Wu ◽  
Pengcheng Niu

AbstractThe aim of this paper is to study the oscillation of solutions of the nonlinear degenerate elliptic equation in the Heisenberg group $H^{n}$ H n . We first derive a critical inequality in $H^{n}$ H n . Based on it, we establish a Picone-type differential inequality and a Sturm-type comparison principle. Then we obtain an oscillation theorem. Our result generalizes the related conclusions for the nonlinear elliptic equations in $R^{n}$ R n .


2019 ◽  
Vol 12 (4) ◽  
pp. 393-421
Author(s):  
Tilak Bhattacharya ◽  
Leonardo Marazzi

AbstractWe consider viscosity solutions of a class of nonlinear degenerate elliptic equations, involving a parameter, on bounded domains. These arise in the study of eigenvalue problems. We prove comparison principles and a priori supremum bounds for the solutions. We also address the eigenvalue problem and, in many instances, show the existence of the first eigenvalue and an associated positive first eigenfunction.


2014 ◽  
Vol 20 (2) ◽  
Author(s):  
Albo Carlos Cavalheiro

AbstractIn this paper we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated to the degenerate nonlinear elliptic equations


2020 ◽  
Vol 6 (1) ◽  
pp. 16-33 ◽  
Author(s):  
M. Bourahma ◽  
J. Bennouna ◽  
M. El Moumni

AbstractIn this paper, we show the existence of solutions for the nonlinear elliptic equations of the form\left\{ {\matrix{ { - {\rm{div}}\,a\left( {x,u,\nabla u} \right) = f,} \hfill \cr {u \in W_0^1L\varphi \left( \Omega \right) \cap {L^\infty }\left( \Omega \right),} \hfill \cr } } \right.where a\left( {x,s,\xi } \right) \cdot \xi \ge \bar \varphi _x^{ - 1}\left( {\varphi \left( {x,h\left( {\left| s \right|} \right)} \right)} \right)\varphi \left( {x,\left| \xi \right|} \right) and h : ℝ+→]0, 1] is a continuous decreasing function with unbounded primitive. The second term f belongs to LN(Ω) or to Lm(Ω), with m = {{rN} \over {r + 1}} for some r > 0 and φ is a Musielak function satisfying the Δ2-condition.


2005 ◽  
Vol 2005 (10) ◽  
pp. 1507-1523 ◽  
Author(s):  
Robert Dalmasso

We consider the existence, the nonexistence, and the uniqueness of solutions of some special systems of nonlinear elliptic equations with boundary conditions. In a particular case, the system reduces to the homogeneous Dirichlet problem for the biharmonic equationΔ2u=|u|pin a ball withp>0.


Sign in / Sign up

Export Citation Format

Share Document