Existence and uniqueness of solution for a class of nonlinear degenerate elliptic equation in weighted Sobolev spaces
Keyword(s):
AbstractIn this work we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations$$\matrix{{\Delta {\rm{(v}}({\rm{x}})\left| {\Delta {\rm{u}}} \right|^{{\rm{r}} - 2} \Delta {\rm{u}}) - \sum\limits_{{\rm{j}} = 1}^{\rm{n}} {{\rm{D}}_{\rm{j}} [{\rm{w}}_1 ({\rm{x}}){\cal{A}}_{\rm{j}} ({\rm{x}},{\rm{u}},\nabla {\rm{u}})]} } \hfill \cr { + \;{\rm{b}}({\rm{x}},{\rm{u}},\nabla {\rm{u}})\;{\rm{w}}_2 ({\rm{x}}) = {\rm{f}}_0 ({\rm{x}}) - \sum\limits_{{\rm{j}} = 1}^{\rm{n}} {{\rm{D}}_{\rm{j}} {\rm{f}}_{\rm{j}} ({\rm{x}}),\;\;\;\;\;{\rm{in}}\;\Omega } }}$$in the setting of the Weighted Sobolev Spaces.
2016 ◽
Vol 70
(2)
◽
pp. 9
2019 ◽
Vol 5
(2)
◽
pp. 164-178
2020 ◽
Vol 6
(1)
◽
pp. 16-33
◽
2005 ◽
Vol 2005
(10)
◽
pp. 1507-1523
◽
2016 ◽
Vol 19
(3)
◽
pp. 453-467
◽