scholarly journals Selenium induced selenocysteine methyltransferase gene expression and antioxidant enzyme activities in Astragalus chrysochlorus

2016 ◽  
Vol 75 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Özgür Çakir ◽  
Neslihan Turgut-Kara ◽  
Şule Ari

Abstract Astragalus sp. are used in folk medicine because of their biological activities and are known for the ability to accumulate high levels of selenium (Se). The purpose of this study was to explore gene expression of selenocysteine methyltransferase (SMT), responsible for forming MeSeCys, and activities of ascorbate peroxidase (APX), peroxidase (POX), catalase (CAT) and glutathione reductase (GR) enzymes in callus tissues of Astragalus chrysochlorus growing in different Se-containing media. Quantitative real-time polymerase chain reaction assay was done for quantification of SMT gene transcript and it was normalized to actin gene. It was found that transcript level of callus tissues grown at 5.2 μM and 26.4 μM Se-enriched media was lower than that of the control callus. In contrast, a high level of Se (132.3 μM) in the medium caused an approximately 4.26 times higher level of SMT transcript in callus than the control. APX, POX, CAT and GR enzymes were all effected by different Se concentrations. While POX and APX activities were higher then control, CAT and GR activities decreased. These results show that an increase of SMT gene expression led to a rise in APX and POX, but a suppression of CAT and GR enzymes activities in Astragalus chrysochlorus. This suggests that Se could be involved in the antioxidant metabolism in Astragalus chrysochlorus.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xia Zhang ◽  
HaiBo Yin ◽  
ShiHua Chen ◽  
Jun He ◽  
ShanLi Guo

The halophyteLimonium sinenseKuntze is used in traditional Chinese medicine for clearing heat and for detoxification. To examine the detoxification and salt-tolerance mechanisms of this plant, we analyzed antioxidant enzyme activities and transcript levels of genes encoding antioxidant enzymes inL. sinenseseedlings under salt stress (500 mmol/L NaCl). Catalase showed the largest increase in activity, peaking on day 4 of the 7-day NaCl treatment. Peroxidase and superoxide dismutase activities also increased, peaking on days 2 and 3 of the NaCl treatment, respectively. The activities of antioxidant enzymes decreased as the duration of the NaCl treatment extended. The transcript levels of genes encoding antioxidant enzymes were upregulated under NaCl stress. The peak in theLsCATtranscript level was earlier than the peaks inLsAPXandLsGPXtranscript levels. The malondialdehyde content only slightly increased inL. sinenseseedlings under NaCl stress. This was indicative of a low level of lipid peroxidation, consistent with the increased antioxidant enzyme activities and gene transcript levels. These results show that, under NaCl stress, the antioxidant system ofL. sinenseis activated and effectively scavenges reactive oxygen species. This reduces oxidative damage and allows the plant to maintain growth under NaCl stress.


2020 ◽  
Vol 06 ◽  
Author(s):  
Faiq H. S. Hussain ◽  
Hawraz Ibrahim M. Amin ◽  
Dinesh kumar Patel ◽  
Omji Porwal

: The family Iridaceae contains 92 genera and more than 1800 species, mostly perennial herbs with underground storage organs called rhizomes (bulbs). Some genera are important in traditional medicines, especially Iris and Gladiolus. The genus Iris belongs to this family and comprises about hundreds species among them, 12 species are found in Iraq. It has been widely used various medicines worldwide especially Iris persica is used in folk medicine in the Kurdistan region of Iraq as an effective treatment against tumours, antibacterial, antifungal and treating inflammation. Earlier finding confirmed that Iris persica and its constituents play role in the scavenging of free radical generation and prevention of disease pathogenesis. Each part of the Iris persica herb has some medicinal property. This review gives a eagle eye view mainly on the biological activities of the Iris persica and some of their compounds isolated, pharmacological actions of the Iris persica extracts and products, and plausible medicinal and therapeutically applications.


2021 ◽  
Vol 22 (10) ◽  
pp. 5128
Author(s):  
Karolina Lendzion ◽  
Agnieszka Gornowicz ◽  
Krzysztof Bielawski ◽  
Anna Bielawska

The genus Scorzonera comprises nearly 200 species, naturally occurring in Europe, Asia, and northern parts of Africa. Plants belonging to the Scorzonera genus have been a significant part of folk medicine in Asia, especially China, Mongolia, and Turkey for centuries. Therefore, they have become the subject of research regarding their phytochemical composition and biological activity. The aim of this review is to present and assess the phytochemical composition, and bioactive potential of species within the genus Scorzonera. Studies have shown the presence of many bioactive compounds like triterpenoids, sesquiterpenoids, flavonoids, or caffeic acid and quinic acid derivatives in extracts obtained from aerial and subaerial parts of the plants. The antioxidant and cytotoxic properties have been evaluated, together with the mechanism of anti-inflammatory, analgesic, and hepatoprotective activity. Scorzonera species have also been investigated for their activity against several bacteria and fungi strains. Despite mild cytotoxicity against cancer cell lines in vitro, the bioactive properties in wound healing therapy and the treatment of microbial infections might, in perspective, be the starting point for the research on Scorzonera species as active agents in medical products designed for miscellaneous skin conditions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Olumide Samuel Fadahunsi ◽  
Peter Ifeoluwa Adegbola ◽  
Olubukola Sinbad Olorunnisola ◽  
Temitayo Idris Subair ◽  
David Oluwasegun Adepoju ◽  
...  

Abstract Background Hunteria umbellate (K. Schum.) Hallier f. (Apocynaceae) is a tropical rainforest tree commonly found in sub-Saharan region of Africa. It is a useful and very popular plant among the locals due to the outstanding anti-diabetic activity of the seeds. Methods A comprehensive literature search on articles published on phytochemical analysis and various pharmacological activities of Hunteria umbellate was carried out using search engines such as Google Scholar, PubMed and Science Direct. Results In this review, it was deduced that H. umbellate is employed in folk medicine as an elixir for obesity, fever, leprosy sores, menstrual pain, infertility, yaws, intestinal worms, abdominal discomfort and stomach ache. Due to their durability and immunity against termites, the stems are coveted and desired as timbers in the construction of houses, while the bark has been reportedly exported to Europe for medicinal uses. Pharmacological activities such as fertility enhancing, aphrodisiac, hypoglycemic, anti-inflammatory, has been ascribed to the different morphological organs of H. umbellate. Moreover, compounds belonging to important classes of secondary metabolites with biological activities such as triterpenoids, flavonoids, tannins, alkaloids, quinic acids have been identified and characterized from the plant. Conclusion From this review, it can be inferred that, numerous and bioactive principles with known biological usefulness are present in the extracts of H. umbellate and might be responsible for the observed biological and pharmacological activities.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 319-329 ◽  
Author(s):  
S Dziennis ◽  
RA Van Etten ◽  
HL Pahl ◽  
DL Morris ◽  
TL Rothstein ◽  
...  

Abstract CD11b is the alpha chain of the Mac-1 integrin and is preferentially expressed in myeloid cells (neutrophils, monocytes, and macrophages). We have previously shown that the CD11b promoter directs cell-type- specific expression in myeloid lines using transient transfection assays. To confirm that these promoter sequences contain the proper regulatory elements for correct myeloid expression of CD11b in vivo, we have used the -1.7-kb human CD11b promoter to direct reporter gene expression in transgenic mice. Stable founder lines were generated with two different reporter genes, a Thy 1.1 surface marker and the Escherichia coli lacZ (beta-galactosidase) gene. Analysis of founders generated with each reporter demonstrated that the CD11b promoter was capable of driving high levels of transgene expression in murine macrophages for the lifetime of the animals. Similar to the endogenous gene, transgene expression was preferentially found in mature monocytes, macrophages, and neutrophils and not in myeloid precursors. These experiments indicate that the -1.7 CD11b promoter contains the regulatory elements sufficient for high-level macrophage expression. This promoter should be useful for targeting heterologous gene expression to mature myeloid cells.


2011 ◽  
Vol 107 (8) ◽  
pp. 1112-1118 ◽  
Author(s):  
Pei-Hsuan Tsai ◽  
Jun-Jen Liu ◽  
Chui-Li Yeh ◽  
Wan-Chun Chiu ◽  
Sung-Ling Yeh

There are close links among hyperglycaemia, oxidative stress and diabetic complications. Glutamine (GLN) is an amino acid with immunomodulatory properties. The present study investigated the effect of dietary GLN on oxidative stress-relative gene expressions and tissue oxidative damage in diabetes. There were one normal control (NC) and two diabetic groups in the present study. Diabetes was induced by an intraperitoneal injection of nicotinamide followed by streptozotocin (STZ). Rats in the NC group were fed a regular chow diet. In the two diabetic groups, one group (diabetes mellitus, DM) was fed a common semi-purified diet while the other group received a diet in which part of the casein was replaced by GLN (DM-GLN). GLN provided 25 % of total amino acid N. The experimental groups were fed the respective diets for 8 weeks, and then the rats were killed for further analysis. The results showed that blood thioredoxin-interacting protein (Txnip) mRNA expression in the diabetic groups was higher than that in the NC group. Compared with the DM group, the DM-GLN group had lower glutamine fructose-6-phosphate transaminase 1, a receptor of advanced glycation end products, and Txnip gene expressions in blood mononuclear cells. The total antioxidant capacity was lower and antioxidant enzyme activities were altered by the diabetic condition. GLN supplementation increased antioxidant capacity and normalised antioxidant enzyme activities. Also, the renal nitrotyrosine level and Txnip mRNA expression were lower when GLN was administered. These results suggest that dietary GLN supplementation decreases oxidative stress-related gene expression, increases the antioxidant potential and may consequently attenuate renal oxidative damage in rats with STZ-induced diabetes.


Author(s):  
Saeed Sharifi ◽  
Bita Bakhshi ◽  
Shahin Najar-peerayeh

Abstract Background Campylobacter resistance to antimicrobial agents is regarded as a major concern worldwide. The aim of this study was to investigate the expression of the CmeABC efflux pump and the RAPD-PCR pattern in drug-resistant Campylobacter isolates. Methods A total of 283 stool specimens were collected from children under the age of five with diarrhea. The minimum inhibitory concentration (MIC) of tetracycline and ciprofloxacin was determined by broth microdilution method and E-test, respectively. Detection of tetracycline and ciprofloxacin determinants was done by amplification of tetO gene and PCR-sequencing of the gyrA gene. The cmeABC transcriptional expression was analyzed by Real-time (RT)-PCR. Clonal correlation of resistant strains was determined by RAPD-PCR genotyping. Results Out of 283 fecal samples, 20 (7.02%) samples were positive for Campylobacter spp. Analysis of duplex PCR assay of the cadF gene showed that 737 and 461 bp amplicons were corresponding to Campylobacter jejuni and Campylobacter coli, respectively. All of the 17 phenotypically tetracycline-resistant Campylobacter isolates harbored the tetO gene. Also, four phenotypically ciprofloxacin-resistant Campylobacter isolates had a point mutation at codon 257 of the gyrA gene (ACA to ATA; Thr > Ile). High-level expression of the cmeA gene was observed in ciprofloxacin-resistant and high-level tetracycline-resistant Campylobacter isolates, suggesting a positive correlation between the cmeA gene expression level and tetracycline resistance level. Moreover, a statistically significant difference was observed in the cmeA gene expression between ciprofloxacin-resistant and ciprofloxacin-susceptible strains, which signifies the crucial contribution of the efflux pump in conferring multiple drug resistance phenotype among Campylobacter spp. RAPD analysis of Campylobacter isolates exhibited 16 different patterns. Simpsone`s diversity index of RAPD-PCR was calculated as 0.85, showing a high level of homogeneity among the population; however, no clear correlation was detected among tetracycline and/or ciprofloxacin resistant isolates. Conclusion Significant contribution of the CmeABC efflux pump in conferring high-level resistance to tetracycline and ciprofloxacin was observed in C. jejuni and C. coli clinical isolates. The resistant phenotype is suggested to be mediated by CmeABC efflux pumps, the tetO gene, and point mutation of the gyrA gene. Genotyping revealed no clonal correlation among resistant strains, indicating distinct evolution of tetracycline and ciprofloxacin resistant genotypes among the isolates.


Sign in / Sign up

Export Citation Format

Share Document