scholarly journals Utilization and simulation of innovative new binuclear Co(ii), Ni(ii), Cu(ii), and Zn(ii) diimine Schiff base complexes in sterilization and coronavirus resistance (Covid-19)

2021 ◽  
Vol 19 (1) ◽  
pp. 772-784
Author(s):  
Moamen S. Refat ◽  
Ahmed Gaber ◽  
Walaa F. Alsanie ◽  
Mohamed I. Kobeasy ◽  
Rozan Zakaria ◽  
...  

Abstract This article aimed at the synthesis and molecular docking assessment of new diimine Schiff base ligand, namely 2-((E)-(2-((Z)-2-(4-chlorophenyl)-2-hydroxyvinyl)hydrazono) methyl)-6-methoxyphenol (methoxy-diim), via the condensation of 1-(4-chloro-phenyl)-2-hydrazino-ethenol compound with 2-((E)-(2-((Z)-2-(4-chlorophenyl)-2-hydroxy vinyl) hydrazono)methyl)-6-methoxyphenol in acetic acid as well as the preparation of new binuclear complexes of Co(ii), Ni(ii), Cu(ii), and Zn(ii). The following synthesized complexes were prepared in a ratio of 2:1 (metal/ligand). The 1H-NMR, UV-Vis, and FTIR spectroscopic data; molar conductivity measurements; and microanalytical, XRD, TGA/DTG, and biological studies were carried out to determine the molecular structure of these complexes. According to the spectroscopic analysis, the two central metal ions were coordinated with the diamine ligand via the nitrogen of the hydrazine and oxygen of the hydroxyl groups for the first metal ions and via the nitrogen of the hydrazine and oxygen of the phenol group for the second metal ions. Molecular docking for the free ligand was carried out against the breast cancer 3hb5-oxidoreductase and the 4o1v-protein binding kidney cancer and COVID-19 protease, and good results were obtained.

2020 ◽  
Vol 10 (2) ◽  
pp. 290-300
Author(s):  
Asma S. Al-Wasidi ◽  
Ahmed M. Naglah ◽  
Mohamed A. Al-Omar ◽  
Abdul-Rahman M. Al-Obaid ◽  
Eid H. Alosaimi ◽  
...  

Mn(II), Fe(III), Co(II) and Cu(II) Schiff base complexes with general formula ML−2 .nH2O (where M is a respected metal ions and L−2 is the Schiff base). The Schiff base (L = TSCPA) was formed by the condensation of thiosemicarbazide and phthalic anhydride in acetic acid. The microanalytical analysis confirmed the 1:1 (metal: ligand) molar ratio. Magnetic susceptibility and electronic absorption spectra were suggested that the Fe(III) and Co(II) complexes were octahedral structure but the Mn(II) and Cu(II) complexes were tetrahedral geometry. FTIR spectra reveal that the ligand exists, predominantly, as keto form in a solid state but as enol form in the alkaline medium. The coordination between TSCPA chelate and central metal ions take place through nitrogen –NH, sulphur C=S and oxygen –OH groups. Based on the molar conductance measurements the complexes may be formulated as [Mn(L)(H2O)] · 4H2O, [Fe(L)(Cl)(H2O)2] · 2H2O, [Co(L)(H2O)3] · 3H2O and [Cu(L)(H2O)] · 4H2O due to their non-electrolytic behavior. The Schiff base ligand and their metal complexes were screened in vitro against G(+Ve) and G(−Ve) bacteria. This study came after proactive step, which concerning with docking study against pathogen proteins corresponding to microorganisms for bacteria and fungi, which will be scanned in vitro study. Thermogravimetry (TGA) and differential thermogravimetry (DTG) were discussed.


2018 ◽  
Vol 69 (7) ◽  
pp. 1678-1681
Author(s):  
Amina Mumtaz ◽  
Tariq Mahmud ◽  
M. R. J. Elsegood ◽  
G. W. Weaver

New series of copper (II), cobalt (II), zinc (II), nickel (II), manganese (II), iron (II) complexes of a novel Schiff base were prepared by the condensation of sulphadizine and pyridoxal hydrochloride. The ligand and metal complexes were characterized by utilizing different instrumental procedures like microanalysis, thermogravimetric examination and spectroscopy. The integrated ligand and transition metal complexes were screened against various bacteria and fungus. The studies demonstrated the enhanced activity of metal complexes against reported microbes when compared with free ligand.


2020 ◽  
Vol 32 (11) ◽  
pp. 2846-2854
Author(s):  
V. Soundaranayaki ◽  
A. Kulandaisamy

Novel tetra dentate Cu(II), Ni(II), Co(II), VO(II) and Zn(II) Schiff base complexes have been synthesized from salicylidene-4-iminoantipyrine and tyrosine. The synthesized Schiff base complexes was characterized by powder X-ray diffraction studies (XRD), scanning electron microscopy (SEM), FT-IR, ESR, 1H NMR, 13C NMR, UV-vis, molar conductance and magnetic susceptibility measurements. The general formula of complexes was confirmed as [ML] type [M = Cu(II), Co(II), Zn(II), Ni(II) and VO(II); L = C27H24N4O4]. Magnetic susceptibility, IR and UV-vis, spectral data showed that all the complexes have square planar geometry except vanadyl complex which suggests square pyramidal geometry. Lower molar conductance values proved that all the chelates were non-electrolytic nature. The X-band ESR spectra of [CuL] and [VOL] complexes in DMSO solution suggest that the complexes were predominant covalent character. Powder XRD and SEM image pattern evidenced that all the compounds were crystalline in nature and their size ranges from 100-40 nm. Calf thymus DNA binding potential of [CuL] and [VOL] complexes shows that the binding occurs through intercalation mode with low binding constant. The analgesic, CNS, antiulcer and antimicrobial activities of the investigated compounds report reveals that the chelates were significant effect than free Schiff base.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Gehad G. Mohamed ◽  
Walaa H. Mahmoud ◽  
Ahmed M. Refaat

Metal complexes of the 2,2'-(1,3-phenylenebis(diazene-2,1-diyl))bis(4-aminobenzoic acid) diazo ligand (H2L) derived from m-phenylenediamine and p-aminobenzoic acid were synthesized and characterized by different spectral, thermal, and analytical tools. The H2L ligand reacted with the metal ions Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) as 1 : 1 stoichiometry. All complexes displayed an octahedral geometry according to the electronic and magnetic moment measurements. The IR spectra revealed the binding of the azo ligand to the metal ions via two azo nitrogen atoms and protonated carboxylate O in a neutral tetradentate manner. Both IR and 1H NMR spectra documented the involvement of the carboxylate group without proton displacement. The thermal studies pointed out that the complexes had higher thermal stability comparable with that of the free ligand. SEM images revealed the presence of the diazo ligand and its Cd(II) complex in a nanostructure form. The contact angle measurements proved that the Cd(II) complex can be considered as a superhydrophobic material. The molecular and electronic structure of H2L and [Cd(H2L)Cl2].H2O were optimized theoretically, and the quantum chemical parameters were calculated. The biological activities of the ligand, as well as its metal complexes, have been tested in vitro against some bacteria and fungi species. The results showed that all the tested compounds have significant biological activities with different sensitivity levels. The binding between H2L and its Cd(II) complex with receptors of the crystal structure of S. aureus (PDB ID: 3Q8U), crystal structure of protein phosphatase (PPZ1) of Candida albicans (PDB ID: 5JPE), receptors of breast cancer mutant oxidoreductase (PDB ID: 3HB5), and crystal structure of Escherichia coli (PDB ID: 3T88) was predicted and given in detail using molecular docking.


Sign in / Sign up

Export Citation Format

Share Document