Inhibitory effect of mitoquinone against the α-synuclein fibrillation and relevant neurotoxicity: possible role in inhibition of Parkinson’s disease

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gege Yu ◽  
Yonghui Wang ◽  
Jinhua Zhao

Abstract Extensive studies have reported that interaction of α-synuclein amyloid species with neurons is a crucial mechanistic characteristic of Parkinson’s disease (PD) and small molecules can downregulate the neurotoxic effects induced by protein aggregation. However, the exact mechanism(s) of these neuroprotective effects by small molecules remain widely unknown. In the present study, α-synuclein samples in the amyloidogenic condition were aged for 120 h with or without different concentrations of mitoquinone (MitoQ) as a quinone derivative compound and the amyloid characteristics and the relevant neurotoxicity were evaluated by Thioflavin T (ThT)/Nile red fluorescence, Congo red absorption, circular dichroism (CD), transmission electron microscopy (TEM), cell viability, lactate dehydrogenase (LDH), reactive oxygen species (ROS), reactive nitrogen species (RNS), malondialdehyde (MDA), superoxide dismutase (SOD), and caspase-9/-3 activity assays. Results clearly showed the capacity of MitoQ on the inhibition of the formation of α-synuclein fibrillation products through modulation of the aggregation pathway by an effect on the kinetic parameters. Also, it was shown that α-synuclein samples aged for 120 h with MitoQ trigger less neurotoxic effects against SH-SY5Y cells than α-synuclein amyloid alone. Indeed, co-incubation of α-synuclein with MitoQ reduced the membrane leakage, oxidative and nitro-oxidative stress, modifications of macromolecules, and apoptosis.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Minsook Ye ◽  
Seul gi Lee ◽  
Eun Sook Chung ◽  
Su-jin Lim ◽  
Won Seob Kim ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative movement disorder that is characterized by the progressive degeneration of the dopaminergic (DA) pathway. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes damage to the DA neurons, and 1-4-methyl-4-phenylpyridinium (MPP+) causes cell death in differentiated PC12 cells that is similar to the degeneration that occurs in PD. Moreover, MPTP treatment increases the activity of the brain’s immune cells, reactive oxygen species- (ROS-) generating processes, and glutathione peroxidase. We recently reported that Cuscutae Semen (CS), a widely used traditional herbal medicine, increases cell viability in a yeast model of PD. In the present study, we examined the inhibitory effect of CS on the neurotoxicity of MPTP in mice and on the MPP+-induced cell death in differentiated PC12 cells. The MPTP-induced loss of nigral DA neurons was partly inhibited by CS-mediated decreases in ROS generation. The activation of microglia was slightly inhibited by CS, although this effect did not reach statistical significance. Furthermore, CS may reduce the MPP+ toxicity in PC12 cells by suppressing glutathione peroxidase activation. These results suggest that CS may be beneficial for the treatment of neurodegenerative diseases such as PD.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Natalia Moskal ◽  
Victoria Riccio ◽  
Mikhail Bashkurov ◽  
Rediet Taddese ◽  
Alessandro Datti ◽  
...  

AbstractThe accumulation of damaged mitochondria causes the death of dopaminergic neurons. The Parkin-mediated mitophagy pathway functions to remove these mitochondria from cells. Targeting this pathway represents a therapeutic strategy for several neurodegenerative diseases, most notably Parkinson’s disease. We describe a discovery pipeline to identify small molecules that increase Parkin recruitment to damaged mitochondria and ensuing mitophagy. We show that ROCK inhibitors promote the activity of this pathway by increasing the recruitment of HK2, a positive regulator of Parkin, to mitochondria. This leads to the increased targeting of mitochondria to lysosomes and removal of damaged mitochondria from cells. Furthermore, ROCK inhibitors demonstrate neuroprotective effects in flies subjected to paraquat, a parkinsonian toxin that induces mitochondrial damage. Importantly, parkin and rok are required for these effects, revealing a signaling axis which controls Parkin-mediated mitophagy that may be exploited for the development of Parkinson’s disease therapeutics.


Author(s):  
Osmar Vieira Ramires Júnior ◽  
Barbara da Silva Alves ◽  
Paula Alice Bezerra Barros ◽  
Jamile Lima Rodrigues ◽  
Shana Pires Ferreira ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Keya Li ◽  
Xinyue Li ◽  
Guiying Shi ◽  
Xuepei Lei ◽  
Yiying Huang ◽  
...  

AbstractAnimal models provide an opportunity to assess the optimal treatment way and the underlying mechanisms of direct clinical application of adipose-derived stem cells (ADSCs). Previous studies have evaluated the effects of primitive and induced ADSCs in animal models of Parkinson’s disease (PD). Here, eight databases were systematically searched for studies on the effects and in vivo changes caused by ADSC intervention. Quality assessment was conducted using a 10-item risk of bias tool. For the subsequent meta-analysis, study characteristics were extracted and effect sizes were computed. Ten out of 2324 published articles (n = 169 animals) were selected for further meta-analysis. After ADSC therapy, the rotation behavior (10 experiments, n = 156 animals) and rotarod performance (3 experiments, n = 54 animals) were improved (P < 0.000 01 and P = 0.000 3, respectively). The rotation behavior test reflected functional recovery, which may be due to the neurogenesis from neuronally differentiated ADSCs, resulting in a higher pooled effect size of standard mean difference (SMD) (− 2.59; 95% CI, − 3.57 to − 1.61) when compared to that of primitive cells (− 2.18; 95% CI, − 3.29 to − 1.07). Stratified analyses by different time intervals indicated that ADSC intervention exhibited a long-term effect. Following the transplantation of ADSCs, tyrosine hydroxylase-positive neurons recovered in the lesion area with pooled SMD of 13.36 [6.85, 19.86]. Transplantation of ADSCs is a therapeutic option that shows long-lasting effects in animal models of PD. The potential mechanisms of ADSCs involve neurogenesis and neuroprotective effects. The standardized induction of neural form of transplanted ADSCs can lead to a future application in clinical practice.


2021 ◽  
pp. 1-15
Author(s):  
Zijuan Zhang ◽  
Li Hao ◽  
Ming Shi ◽  
Ziyang Yu ◽  
Simai Shao ◽  
...  

Background: Glucagon-like peptide 2 (GLP-2) is a peptide hormone derived from the proglucagon gene expressed in the intestines, pancreas and brain. Some previous studies showed that GLP-2 improved aging and Alzheimer’s disease related memory impairments. Parkinson’s disease (PD) is a progressive neurodegenerative disorder, and to date, there is no particular medicine reversed PD symptoms effectively. Objective: The aim of this study was to evaluate neuroprotective effects of a GLP-2 analogue in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) PD mouse model. Methods: In the present study, the protease resistant Gly(2)-GLP-2 (50 nmol/kg ip.) analogue has been tested for 14 days by behavioral assessment, transmission electron microscope, immunofluorescence histochemistry, enzyme-linked immunosorbent assay and western blot in an acute PD mouse model induced by MPTP. For comparison, the incretin receptor dual agonist DA5-CH was tested in a separate group. Results: The GLP-2 analogue treatment improved the locomotor and exploratory activity of mice, and improved bradykinesia and movement imbalance of mice. Gly(2)-GLP-2 treatment also protected dopaminergic neurons and restored tyrosine hydroxylase expression levels in the substantia nigra. Gly(2)-GLP-2 furthermore reduced the inflammation response as seen in lower microglia activation, and decreased NLRP3 and interleukin-1β pro-inflammatory cytokine expression levels. In addition, the GLP-2 analogue improved MPTP-induced mitochondrial dysfunction in the substantia nigra. The protective effects were comparable to those of the dual agonist DA5-CH. Conclusion: The present results demonstrate that Gly(2)-GLP-2 can attenuate NLRP3 inflammasome-mediated inflammation and mitochondrial damage in the substantia nigra induced by MPTP, and Gly(2)-GLP-2 shows neuroprotective effects in this PD animal model.


Fitoterapia ◽  
2013 ◽  
Vol 90 ◽  
pp. 112-118 ◽  
Author(s):  
Chang-Liang Xu ◽  
Rong Qu ◽  
Jin Zhang ◽  
Lu-Fan Li ◽  
Shi-Ping Ma

2010 ◽  
Vol 1 (1) ◽  
pp. e2-e2 ◽  
Author(s):  
T A Yacoubian ◽  
S R Slone ◽  
A J Harrington ◽  
S Hamamichi ◽  
J M Schieltz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document