Null controllability of Hilfer fractional stochastic integrodifferential equations with noninstantaneous impulsive and Poisson jump

Author(s):  
Yousef Alnafisah ◽  
Hamdy M. Ahmed

Abstract In this paper, we investigate the sufficient conditions for null controllability of noninstantaneous impulsive Hilfer fractional stochastic integrodifferential system with the Rosenblatt process and Poisson jump. The required results are obtained based on fractional calculus, stochastic analysis, and Sadovskii’s fixed point theorem. Finally, an example is given to illustrate the obtained results.

2006 ◽  
Vol 2006 ◽  
pp. 1-18 ◽  
Author(s):  
K. Balachandran ◽  
A. Leelamani

We establish a set of sufficient conditions for the controllability of nonlinear neutral evolution integrodifferential systems with infinite delay in Banach spaces. The results are established by using the Sadovskiĭ fixed point theorem and generalize the previous results.


2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
Peilian Guo ◽  
Yansheng Liu

By using the fixed point theorem on cone, some sufficient conditions are obtained on the existence of positive periodic solutions for a class ofn-species competition systems with impulses. Meanwhile, we point out that the conclusion of (Yan, 2009) is incorrect.


2021 ◽  
Vol 2 (3) ◽  
pp. 9-20
Author(s):  
VARSHINI S ◽  
BANUPRIYA K ◽  
RAMKUMAR K ◽  
RAVIKUMAR K

The paper is concerned with stochastic random impulsive integro-differential equations with non-local conditions. The sufficient conditions guarantees uniqueness of mild solution derived using Banach fixed point theorem. Stability of the solution is derived by incorporating Banach fixed point theorem with certain inequality techniques.


1975 ◽  
Vol 12 (03) ◽  
pp. 605-611 ◽  
Author(s):  
Joseph A. Yahav

A discrete-time Markov process on the interval [0, 1] is considered. Sufficient conditions for the existence of a unique stationary limiting distribution are given.


Author(s):  
Krishnan Balachandran ◽  
Jayakumar Kokila

Abstract This paper is concerned with the controllability of linear and nonlinear fractional dynamical systems in finite dimensional spaces. Sufficient conditions for controllability are obtained using Schauder’s fixed point theorem and the controllability Grammian matrix which is defined by the Mittag-Leffler matrix function. Examples are given to illustrate the effectiveness of the theory.


2009 ◽  
Vol 2009 ◽  
pp. 1-27
Author(s):  
You-Hui Su ◽  
Can-Yun Huang

This paper makes a study on the existence of positive solution top-Laplacian dynamic equations on time scales𝕋. Some new sufficient conditions are obtained for the existence of at least single or twin positive solutions by using Krasnosel'skii's fixed point theorem and new sufficient conditions are also obtained for the existence of at least triple or arbitrary odd number positive solutions by using generalized Avery-Henderson fixed point theorem and Avery-Peterson fixed point theorem. As applications, two examples are given to illustrate the main results and their differences. These results are even new for the special cases of continuous and discrete equations, as well as in the general time-scale setting.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
C. Ravichandran ◽  
J. J. Trujillo

This paper is concerned with the controllability problem for a class of mixed type impulsive fractional integro-differential equations in Banach spaces. Sufficient conditions for the controllability result are established by using suitable fixed point theorem combined with the fractional calculus theory and solution operator under some weak conditions. The example is given in illustrate the theory. The results of this article are generalization and improved of the recent results on this issue.


2008 ◽  
Vol 01 (03) ◽  
pp. 355-360 ◽  
Author(s):  
CHUNHUA FENG ◽  
ZHENKUN HUANG

By employing a fixed point theorem in cones, this paper investigates the existence of almost periodic solutions for an impulsive logistic equation with infinite delay. A set of sufficient conditions on the existence of almost periodic solutions of the equation is obtained.


2015 ◽  
Vol 20 (2) ◽  
pp. 188-204 ◽  
Author(s):  
Ilkay Yaslan Karaca ◽  
Fatma Tokmak Fen

In this paper, by using double fixed point theorem and a new fixed point theorem, some sufficient conditions for the existence of at least two and at least three positive solutions of an nth-order boundary value problem with integral boundary conditions are established, respectively. We also give two examples to illustrate our main results.


2018 ◽  
Vol 1 (1) ◽  
pp. 21-36 ◽  
Author(s):  
Mısır J. Mardanov ◽  
Yagub A. Sharifov ◽  
Kamala E. Ismayilova

AbstractThis paper is devoted to a system of nonlinear impulsive differential equations with three-point boundary conditions. The Green function is constructed and considered original problem is reduced to the equivalent impulsive integral equations. Sufficient conditions are found for the existence and uniqueness of solutions for the boundary value problems for the first order nonlinear system of the impulsive ordinary differential equations with three-point boundary conditions. The Banach fixed point theorem is used to prove the existence and uniqueness of a solution of the problem and Schaefer’s fixed point theorem is used to prove the existence of a solution of the problem under consideration. We illustrate the application of the main results by two examples.


Sign in / Sign up

Export Citation Format

Share Document