Testing of logarithmic-law for the slip with friction boundary condition

Author(s):  
Özgül İlhan ◽  
Niyazi Şahin

Abstract Large eddy simulation (LES) seeks to predict the dynamics of the organized structures in the flow, that is, local spatial averages u ̄ $\bar{u}$ of the velocity u of the fluid. Although LES has been extensively used to model turbulent flows, very often, the model has difficulty predicting turbulence generated by interactions of a flow with a boundary. A critical problem in LES is to find appropriate boundary conditions for the flow averages, which depend on the behavior of the unknown flow near the wall. In the light of the works of Navier and Maxwell, we use boundary conditions on the wall. We compute the appropriate friction coefficient β for channel flows and investigate its asymptotic behavior as the averaging radius δ → 0 and as the Reynolds number Re → ∞. No-slip conditions are recovered in the first limit, and free-slip conditions are recovered in the second limit. This study is not intended to develop new theories of the turbulent boundary layer; we use available boundary layer theories to improve numerical boundary conditions for flow averages.

2001 ◽  
Vol 446 ◽  
pp. 309-320 ◽  
Author(s):  
IVAN MARUSIC ◽  
GARY J. KUNKEL ◽  
FERNANDO PORTÉ-AGEL

An experimental investigation was conducted to study the wall boundary condition for large-eddy simulation (LES) of a turbulent boundary layer at Rθ = 3500. Most boundary condition formulations for LES require the specification of the instantaneous filtered wall shear stress field based upon the filtered velocity field at the closest grid point above the wall. Three conventional boundary conditions are tested using simultaneously obtained filtered wall shear stress and streamwise and wall-normal velocities, at locations nominally within the log region of the flow. This was done using arrays of hot-film sensors and X-wire probes. The results indicate that models based on streamwise velocity perform better than those using the wall-normal velocity, but overall significant discrepancies were found for all three models. A new model is proposed which gives better agreement with the shear stress measured at the wall. The new model is also based on the streamwise velocity but is formulated so as to be consistent with ‘outer-flow’ scaling similarity of the streamwise velocity spectra. It is therefore expected to be more generally applicable over a larger range of Reynolds numbers at any first-grid position within the log region of the boundary layer.


Author(s):  
Michael Leschziner ◽  
Ning Li ◽  
Fabrizio Tessicini

This paper provides a discussion of several aspects of the construction of approaches that combine statistical (Reynolds-averaged Navier–Stokes, RANS) models with large eddy simulation (LES), with the objective of making LES an economically viable method for predicting complex, high Reynolds number turbulent flows. The first part provides a review of alternative approaches, highlighting their rationale and major elements. Next, two particular methods are introduced in greater detail: one based on coupling near-wall RANS models to the outer LES domain on a single contiguous mesh, and the other involving the application of the RANS and LES procedures on separate zones, the former confined to a thin near-wall layer. Examples for their performance are included for channel flow and, in the case of the zonal strategy, for three separated flows. Finally, a discussion of prospects is given, as viewed from the writer's perspective.


1997 ◽  
Vol 336 ◽  
pp. 151-182 ◽  
Author(s):  
BRANKO KOSOVIĆ

It has been recognized that the subgrid-scale (SGS) parameterization represents a critical component of a successful large-eddy simulation (LES). Commonly used linear SGS models produce erroneous mean velocity profiles in LES of high-Reynolds-number boundary layer flows. Although recently proposed approaches to solving this problem have resulted in significant improvements, questions about the true nature of the SGS problem in shear-driven high-Reynolds-number flows remain open.We argue that the SGS models must capture inertial transfer effects including backscatter of energy as well as its redistribution among the normal SGS stress components. These effects are the consequence of nonlinear interactions and anisotropy. In our modelling procedure we adopt a phenomenological approach whereby the SGS stresses are related to the resolved velocity gradients. We show that since the SGS stress tensor is not frame indifferent a more general nonlinear model can be applied to the SGS parameterization. We develop a nonlinear SGS model capable of reproducing the effects of SGS anisotropy characteristic for shear-driven boundary layers. The results obtained using the nonlinear model for the LES of a neutral shear-driven atmospheric boundary layer show a significant improvement in prediction of the non-dimensional shear and low-order statistics compared to the linear Smagorinsky-type models. These results also demonstrate a profound effect of the SGS model on the flow structures.


2001 ◽  
Vol 17 (3) ◽  
pp. 121-129
Author(s):  
Mei-Jiau Huang

ABSTRACTDirect numerical simulations of 2D turbulent flows, freely decaying as well as forced, are performed to examine the mechanism of the enstrophy cascade and serve as a template of developing LES models. The stretching effect on the 2D vorticity gradients is emphasized on the analogy of the stretching effect on 3D vorticity. The enstrophy cascade rate, the Reynolds stresses and the associated eddy viscosity for 2D turbulence are correspondingly derived and investigated. Proposed herein is that the enstrophy cascade rate to be modeled in a large-eddy simulation can be and should be calculated using the only available large-eddy information, especially when the Reynolds number is not very large or when the flow is not stationary.The simulation results suggest all Kolmogorov's, Kraichnan's, and Saffman's similarity spectra. The Kolmogorov's spectrum appears in front of forced wave numbers and creates a subrange of a zero enstrophy cascade rate and a constant energy cascade rate. The Saffman's spectrum is the dissipation spectrum at large wave numbers. Kraichnan's spectrum shows up at intermediate wave numbers when the Reynolds number is sufficiently high. When the Smagorinsky model is employed for a large eddy simulation, its inability of capturing the significant reverse cascade phenomenon as observed in the DNS data becomes a fatal defect. Nonetheless, if only the mean cascade rate is concerned, the required Smagorinsky constant is evaluated using the DNS data and compared with the theoretical prediction of the Kraichnan's spectrum.


2001 ◽  
Vol 436 ◽  
pp. 353-391 ◽  
Author(s):  
J. C. R. HUNT ◽  
N. D. SANDHAM ◽  
J. C. VASSILICOS ◽  
B. E. LAUNDER ◽  
P. A. MONKEWITZ ◽  
...  

Recent research is making progress in framing more precisely the basic dynamical and statistical questions about turbulence and in answering them. It is helping both to define the likely limits to current methods for modelling industrial and environmental turbulent flows, and to suggest new approaches to overcome these limitations. Our selective review is based on the themes and new results that emerged from more than 300 presentations during the Programme held in 1999 at the Isaac Newton Institute, Cambridge, UK, and on research reported elsewhere. A general conclusion is that, although turbulence is not a universal state of nature, there are certain statistical measures and kinematic features of the small-scale flow field that occur in most turbulent flows, while the large-scale eddy motions have qualitative similarities within particular types of turbulence defined by the mean flow, initial or boundary conditions, and in some cases, the range of Reynolds numbers involved. The forced transition to turbulence of laminar flows caused by strong external disturbances was shown to be highly dependent on their amplitude, location, and the type of flow. Global and elliptical instabilities explain much of the three-dimensional and sudden nature of the transition phenomena. A review of experimental results shows how the structure of turbulence, especially in shear flows, continues to change as the Reynolds number of the turbulence increases well above about 104 in ways that current numerical simulations cannot reproduce. Studies of the dynamics of small eddy structures and their mutual interactions indicate that there is a set of characteristic mechanisms in which vortices develop (vortex stretching, roll-up of instability sheets, formation of vortex tubes) and another set in which they break up (through instabilities and self- destructive interactions). Numerical simulations and theoretical arguments suggest that these often occur sequentially in randomly occurring cycles. The factors that determine the overall spectrum of turbulence were reviewed. For a narrow distribution of eddy scales, the form of the spectrum can be defined by characteristic forms of individual eddies. However, if the distribution covers a wide range of scales (as in elongated eddies in the ‘wall’ layer of turbulent boundary layers), they collectively determine the spectra (as assumed in classical theory). Mathematical analyses of the Navier–Stokes and Euler equations applied to eddy structures lead to certain limits being defined regarding the tendencies of the vorticity field to become infinitely large locally. Approximate solutions for eigen modes and Fourier components reveal striking features of the temporal, near-wall structure such as bursting, and of the very elongated, spatial spectra of sheared inhomogeneous turbulence; but other kinds of eddy concepts are needed in less structured parts of the turbulence. Renormalized perturbation methods can now calculate consistently, and in good agreement with experiment, the evolution of second- and third-order spectra of homogeneous and isotropic turbulence. The fact that these calculations do not explicitly include high-order moments and extreme events, suggests that they may play a minor role in the basic dynamics. New methods of approximate numerical simulations of the larger scales of turbulence or ‘very large eddy simulation’ (VLES) based on using statistical models for the smaller scales (as is common in meteorological modelling) enable some turbulent flows with a non-local and non-equilibrium structure, such as impinging or convective flows, to be calculated more efficiently than by using large eddy simulation (LES), and more accurately than by using ‘engineering’ models for statistics at a single point. Generally it is shown that where the turbulence in a fluid volume is changing rapidly and is very inhomogeneous there are flows where even the most complex ‘engineering’ Reynolds stress transport models are only satisfactory with some special adaptation; this may entail the use of transport equations for the third moments or non-universal modelling methods designed explicitly for particular types of flow. LES methods may also need flow-specific corrections for accurate modelling of different types of very high Reynolds number turbulent flow including those near rigid surfaces.This paper is dedicated to the memory of George Batchelor who was the inspiration of so much research in turbulence and who died on 30th March 2000. These results were presented at the last fluid mechanics seminar in DAMTP Cambridge that he attended in November 1999.


Author(s):  
H. G. Choi ◽  
S. W. Kang ◽  
J. Y. Yoo

For the large scale computation of turbulent flows around an arbitrarily shaped body, a parallel LES (large eddy simulation) code has been recently developed in which domain decomposition method is adopted. METIS and MPI (message passing interface) libraries are used for domain partitioning and data communication between processors, respectively. For unsteady computation of the incompressible Navier-Stokes equation, 4-step splitting finite element algorithm [1] is adopted and Smagorinsky or dynamic LES model can be chosen for the modeling of small eddies in turbulent flows. For the outlet (open) boundary condition, a Dirichlet boundary condition for the pressure is proposed. For the validation and performance-estimation of the parallel code, a three-dimensional laminar flow generated by natural convection inside a cube has been solved. We have confirmed that our code gives accurate results compared with previous studies. Regarding the speed-up of the code, the present parallel code with parallel block-Jacobi preconditioner is about 50 times faster than the corresponding serial code with 64 processors when approximately one million grid points are used. Most of the CPU time is consumed in solving elliptic type pressure equation. For the validation of LES models, turbulent channel flows are simulated at Re = 180, which is based on the channel half height and friction velocity using 51 × 71 × 71 grid system. It has been shown that our results agree well with the well-known results by Kim et al. [2] with less grid points than used by them in terms of time-averaged velocity field and velocity fluctuation. Lastly, we have solved the turbulent flow around MIRA (Motor Industry Research Association) model at Re = 1.6 × 106 which is based on the model height and inlet free stream velocity. Both Smagorinsky and dynamic models are tested, comparing estimated drag coefficients and pressure distribution along the model surface with the existing experimental data [3]. With the help of the parallel code developed in this study, we are able to obtain a unsteady solution of the turbulent flow field around a vehicle discretized by approximately three million grid points within two weeks when 32 IBM-SP2-processors are used. The calculated drag coefficient agrees better with the experimental result [3] than those using two equation turbulence models [4].


2020 ◽  
pp. 1-14
Author(s):  
Mattias Liefvendahl ◽  
Mattias Johansson

A complete approach for wall-modeled large-eddy simulation (WMLES) is demonstrated for the simulation of the flow around a bulk carrier in the model scale. Essential components of the method are an a-priori estimate of the thickness of the turbulent boundary layer (TBL) over the hull and to use an unstructured grid with the appropriate resolution relative to this thickness. Expressions from the literature for the scaling of the computational cost, in terms of the grid size, with Reynolds number, are adapted in this application. It is shown that WMLES is possible for model scale ship hydrodynamics, with ∼108 grid cells, which is a gain of at least one order of magnitude as compared with wall-resolving LES. For the canonical case of a flat-plate TBL, the effects of wall model parameters and grid cell topology on the predictive accuracy of the method are investigated. For the flat-plate case, WMLES results are compared with results from direct numerical simulation, RANS (Reynolds-averaged Navier-Stokes), and semi-empirical formulas. For the bulk carrier flow, WMLES and RANS are compared, but further validation is needed to assess the predictive accuracy of the approach. 1. Introduction The number of applications of large-eddy simulation (LES) and other scale-resolving approaches, such as detached-eddy simulation and different forms of RANS-LES hybrids, is steadily increasing in naval hydrodynamics (Larsson et al. 2014; Fureby 2017). The importance of the hull boundary layer and the implications in terms of grid resolution requirements (and associated computational cost) for different turbulence modeling approaches is what mainly limits the application of LES in ship hydrodynamics (Liefvendahl & Fureby 2017). Wall-resolving LES (WRLES), in which the energetic flow structures in the inner part of the turbulent boundary layer (TBL) are resolved, puts excessive requirements on the grid resolution. Recently, the first model scale simulations using WRLES were reported (Nishikawa 2015; Posa & Balaras 2018). In these simulations, >109 grid points were necessary, even at low model scale Reynolds number. For full-scale simulations, WRLES is out of range of present computational resources (Liefvendahl & Fureby 2017).


Sign in / Sign up

Export Citation Format

Share Document