New criteria for dissipativity analysis of Caputo fractional-order neural networks with non-differentiable time-varying delays

Author(s):  
Nguyen Thi Phuong ◽  
Nguyen Thi Thanh Huyen ◽  
Nguyen Thi Huyen Thu ◽  
Nguyen Huu Sau ◽  
Mai Viet Thuan

Abstract In this article, we investigate the delay-dependent and order-dependent dissipativity analysis for a class of Caputo fractional-order neural networks (FONNs) subject to time-varying delays. By employing the Razumikhin fractional-order (RFO) approach combined with linear matrix inequalities (LMIs) techniques, a new sufficient condition is derived to guarantee that the considered fractional-order is strictly (Q, S, R) − γ − dissipativity. The condition is presented via LMIs and can be efficiently checked. Two numerical examples and simulation results are finally provided to express the effectiveness of the obtained results.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Shu Lv ◽  
Junkang Tian ◽  
Shouming Zhong

This paper concerns the problem of delay-dependent stability criteria for recurrent neural networks with time varying delays. By taking more information of states and activation functions as augmented vectors, a new class of the Lyapunov functional is proposed. Then, some less conservative stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the effectiveness of the proposed method.


2014 ◽  
Vol 513-517 ◽  
pp. 922-926
Author(s):  
Ze Rong Ren ◽  
Xiang Jun Xie

This paper is concerned with the problem of delay-dependent asymptotic stability criterion for recurrent neural networks with time-varying delays. A new Lyapunov functional is introduced by considering the information of neuron activation functions adequately. By using the improved delay-partitioning method and reciprocally convex approach, a less conservative stability criterion is obtained in terms of linear matrix inequalities (LMIs). A numerical example is finally given to illustrate the effectiveness of the derived method.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Wei Kang ◽  
Jun Cheng ◽  
Xiangyang Cheng

The problem of passivity analysis for discrete-time stochastic neural networks with time-varying delays is investigated in this paper. New delay-dependent passivity conditions are obtained in terms of linear matrix inequalities. Less conservative conditions are obtained by using integral inequalities to aid in the achievement of criteria ensuring the positiveness of the Lyapunov-Krasovskii functional. At last, numerical examples are given to show the effectiveness of the proposed method.


2015 ◽  
Vol 93 (4) ◽  
pp. 398-408 ◽  
Author(s):  
O.M. Kwon ◽  
M.J. Park ◽  
S.M. Lee ◽  
E.J. Cha

This paper proposes new delay-dependent stability criteria for discrete-time neural networks with interval time-varying delays and probabilistic occurring parameter uncertainties. It is assumed that parameter uncertainties are changed with the environment, explored using random situations, and its stochastic information is included in the proposed method. By constructing a suitable Lyapunov–Krasovskii functional, new delay-dependent stability criteria for the concerned systems are established in terms of linear matrix inequalities, which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method.


Author(s):  
Ramachandran Raja ◽  
Rathinasamy Sakthivel ◽  
Selvaraj Anthoni ◽  
Hyunsoo Kim

Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delaysThe paper is concerned with stability analysis for a class of impulsive Hopfield neural networks with Markovian jumping parameters and time-varying delays. The jumping parameters considered here are generated from a continuous-time discrete-state homogenous Markov process. By employing a Lyapunov functional approach, new delay-dependent stochastic stability criteria are obtained in terms of linear matrix inequalities (LMIs). The proposed criteria can be easily checked by using some standard numerical packages such as the Matlab LMI Toolbox. A numerical example is provided to show that the proposed results significantly improve the allowable upper bounds of delays over some results existing in the literature.


2009 ◽  
Vol 2009 ◽  
pp. 1-17
Author(s):  
Jianjiang Yu

The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay is investigated. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs). The results are shown to be generalization of some previous results and are less conservative than the existing works. Meanwhile, the computational complexity of the obtained stability conditions is reduced because less variables are involved. Two numerical examples are given to show the effectiveness and the benefits of the proposed method.


2009 ◽  
Vol 2009 ◽  
pp. 1-16 ◽  
Author(s):  
Jianting Zhou ◽  
Qiankun Song ◽  
Jianxi Yang

The passivity problem is investigated for a class of stochastic uncertain neural networks with time-varying delay as well as generalized activation functions. By constructing appropriate Lyapunov-Krasovskii functionals, and employing Newton-Leibniz formulation, the free-weighting matrix method, and stochastic analysis technique, a delay-dependent criterion for checking the passivity of the addressed neural networks is established in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. An example with simulation is given to show the effectiveness and less conservatism of the proposed criterion. It is noteworthy that the traditional assumptions on the differentiability of the time-varying delays and the boundedness of its derivative are removed.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
O. M. Kwon ◽  
M. J. Park ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities (LMIs) by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally convex approach. Also, a new activation condition which has not been considered in the literature is proposed and utilized for derivation of stability criteria. Two numerical examples are given to illustrate the effectiveness of the proposed method.


2010 ◽  
Vol 24 (08) ◽  
pp. 775-789 ◽  
Author(s):  
O. M. KWON ◽  
S. M. LEE ◽  
JU H. PARK

In this paper, the problem of stability analysis of neural networks with discrete time-varying delays is considered. By constructing a new Lyapunov functional and some novel analysis techniques, new delay-dependent criteria for checking the asymptotic stability of the neural networks are established. The criteria are presented in terms of linear matrix inequalities, which can be easily solved and checked by various convex optimization algorithms. Three numerical examples are included to show the superiority of our results.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
O. M. Kwon ◽  
M. J. Park ◽  
Ju H. Park ◽  
S. M. Lee ◽  
E. J. Cha

This paper investigates the problem of stability analysis for neural networks with time-varying delays. By utilizing the Wirtinger-based integral inequality and constructing a suitable augmented Lyapunov-Krasovskii functional, two less conservative delay-dependent criteria to guarantee the asymptotic stability of the concerned networks are derived in terms of linear matrix inequalities (LMIs). Three numerical examples are included to explain the superiority of the proposed methods by comparing maximum delay bounds with the recent results published in other literature.


Sign in / Sign up

Export Citation Format

Share Document