scholarly journals Multi-frequency quadrifilar helix antennas for cm-accurate GNSS positioning

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lambert Wanninger ◽  
Melanie Thiemig ◽  
Volker Frevert

Abstract For a few years now, GNSS multi-frequency quadrifilar helix antennas (QHA) are available to be used for precise GNSS applications. We performed test measurements with two types of multi-frequency QHA and compared them with a geodetic patch antenna. Although code and carrier phase noise and high-frequent multipath was determined to be larger as compared to the geodetic antenna, the fast-static horizontal coordinate accuracies are on the same level and demonstrate cm-accuracy capability. One of the QHA types exhibited an increased susceptibility to near-field multipath effects which resulted in a degraded accuracy of the vertical coordinate component.

Author(s):  
Xinyu Zhao ◽  
Pan Tang ◽  
Qidu Song ◽  
Tao Jiang ◽  
Yujie Wang ◽  
...  

2021 ◽  
Author(s):  
Addisu Hunegnaw ◽  
Yohannes Getachew Ejigu ◽  
Felix Norman Teferle ◽  
Gunnar Elgered

<p>The conventional Global Navigation Satellite System (GNSS) processing is typically contaminated with errors due to atmospheric variabilities, such as those associated with the mesoscale phenomena. These errors are manifested in the parameter estimates, including station coordinates and atmospheric products. To enhance the accuracy of these GNSS products further, a better understanding of the local-scale atmospheric variability is necessary. As part of multi-GNSS processing, station coordinates, carrier phase ambiguities, orbits, zenith total delay (ZTD) and horizontal gradients are the main parameters of interest. Here, ZTD is estimated as the average zenith delay along the line-of-sight to every observed GNSS satellite mapped to the vertical while the horizontal gradients are estimated in NS and EW directions and provide a means to partly account for the azimuthally inhomogeneous atmosphere. However, a better atmospheric description is possible by evaluating the slant path delay (SPD) or slant wet delay (SWD) along GNSS ray paths, which are not resolved by ordinary ZTD and gradient analysis. SWD is expected to provide better information about the inhomogeneous distribution of water vapour that is disregarded when retrieving ZTD and horizontal gradients. Usually, SWD cannot be estimated directly from GNSS processing as the number of unknown parameters exceeds the number of observations. Thus, SWD is generally calculated from ZTD for each satellite and may be dominated by un-modelled atmospheric delays, clock errors, unresolved carrier-phase ambiguities and near-surface multipath scattering.</p><p> </p><p>In this work, we have computed multipath maps by stacking individual post-fit carrier residuals incorporating the signals from four GNSS constellations, i.e. BeiDou, Galileo, Glonass and GPS. We have selected a subset of global International GNSS Service (IGS) stations capable of multi-GNSS observables located in different climatic zones. The multipath effects are reduced by subtracting the stacked multipath maps from the raw post-fit carrier phase residuals. We demonstrate that the multipath stacking technique results in significantly reduced variations in the one-way post-fit carrier phase residuals. This is particularly evident for lower elevation angles, thus, producing a retrieval method for SWD that is less affected by site-specific multipath effects. We show a positive impact on SWD estimation using our multipath maps during increased atmospheric inhomogeneity as induced by severe weather events.</p>


2019 ◽  
Vol 94 ◽  
pp. 01012 ◽  
Author(s):  
Irwan Gumilar ◽  
Brian Bramanto ◽  
Fuad F. Rahman ◽  
I Made D. A. Hermawan

As the modernized Global Navigation Satellite System (GNSS) method, Real Time Kinematic (RTK) ensures high accuracy of position (within several centimeters). This method uses Ultra High Frequency (UHF) radio to transmit the correction data, however, due to gain and power issues, Networked Transport of RTCM via Internet Protocol (RTCM) is used to transmit the correction data for a longer baseline. This Research aims to investigate the performance of short to long-range single baseline RTK GNSS (Up to 80 KM) by applying modified LAMBDA method to resolve the ambiguity in carrier phase. The RTK solution then compared with the differential GNSS network solution. The results indicate that the differences are within RTK accuracy up to 80 km are several centimeter for horizontal solution and three times higher for vertical solution.


2014 ◽  
Vol 989-994 ◽  
pp. 2024-2028
Author(s):  
Ye Xing ◽  
Lu Zhang ◽  
Zhe Yuan Cheng ◽  
Kai Gu

In order to use minimal cost to compensate signal distortion caused by fiber dispersion and carrier phase noise etc, this paper mainly puts forward 2 different self-adaption compensation algorithms in algorithm part of digital signal processing, through test and comparative analysis, it indicates that the performance of the best matching and the nature expression based on GCT is the best.


Sign in / Sign up

Export Citation Format

Share Document