scholarly journals Groups whose Chermak–Delgado lattice is a quasi-antichain

2019 ◽  
Vol 22 (3) ◽  
pp. 529-544
Author(s):  
Lijian An

Abstract A quasi-antichain is a lattice consisting of a maximum, a minimum, and the atoms of the lattice. The width of a quasi-antichain is the number of atoms. For a positive integer {w\geq 3} , a quasi-antichain of width w is denoted by {\mathcal{M}_{w}} . In [B. Brewster, P. Hauck and E. Wilcox, Quasi-antichain Chermak–Delgado lattice of finite groups, Arch. Math. 103 2014, 4, 301–311], it is proved that {\mathcal{M}_{w}} can be the Chermak–Delgado lattice of a finite group if and only if {w=1+p^{a}} for some positive integer a and some prime p. Let t be the number of abelian atoms in {\mathcal{CD}(G)} . In this paper, we completely answer the following question: which values of t are possible in quasi-antichain Chermak–Delgado lattices?

2017 ◽  
Vol 16 (03) ◽  
pp. 1750051 ◽  
Author(s):  
Jiangtao Shi ◽  
Wei Meng ◽  
Cui Zhang

Let [Formula: see text] be a finite group and [Formula: see text] any divisor of [Formula: see text], the order of [Formula: see text]. Let [Formula: see text], Frobenius’ theorem states that [Formula: see text] for some positive integer [Formula: see text]. We call [Formula: see text] a Frobenius quotient of [Formula: see text] for [Formula: see text]. Let [Formula: see text] be the set of all Frobenius quotients of [Formula: see text], we call [Formula: see text] the Frobenius spectrum of [Formula: see text]. In this paper, we give a complete classification of finite groups [Formula: see text] with [Formula: see text] for [Formula: see text] being the smallest prime divisor of [Formula: see text]. Moreover, let [Formula: see text] be a finite group of even order, [Formula: see text] the set of all Frobenius quotients of [Formula: see text] for even divisors of [Formula: see text] and [Formula: see text] the maximum Frobenius quotient in [Formula: see text], we prove that [Formula: see text] is always solvable if [Formula: see text] or [Formula: see text] and [Formula: see text] is not a composition factor of [Formula: see text].


1988 ◽  
Vol 108 (1-2) ◽  
pp. 117-132
Author(s):  
Shigeo Koshitani

SynopsisLet J(FG) be the Jacobson radical of the group algebra FG of a finite groupG with a Sylow 3-subgroup which is extra-special of order 27 of exponent 3 over a field F of characteristic 3, and let t(G) be the least positive integer t with J(FG)t = 0. In this paper, we prove that t(G) = 9 if G has a normal subgroup H such that (|G:H|, 3) = 1 and if H is either 3-solvable, SL(3,3) or the Tits simple group 2F4(2)'.


1977 ◽  
Vol 24 (1) ◽  
pp. 117-120 ◽  
Author(s):  
Ronald Hirshon

AbstractIf ε is an endomorphism of a finitely generated residually finite group onto a subgroup Fε of finite index in F, then there exists a positive integer k such that ε is an isomorphism of Fεk. If K is the kernel of ε, then K is a finite group so that if F is a non trivial free product or if F is torsion free, then ε is an isomorphism on F. If ε is an endomorphism of a finitely generated resedually finite group onto a subgroup Fε (not necessatily of ginite index in F) and if the kernel of ε obeys the minimal condition for subgroups then there exists a positive integer k such that ε is an isomorphism on Fεk.


1977 ◽  
Vol 17 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Marcel Herzog ◽  
Cheryl E. Praeger

Let u be a nonidentity element of a finite group G and let c be a complex number. Suppose that every nonprincipal irreducible character X of G satisfies either X(l) − X(u) = c or X(u) = 0. It is shown that c is an even positive integer and all such groups with c ≤ 8 are described.


Author(s):  
E. I. Khukhro ◽  
P. Shumyatsky

AbstractA left Engel sink of an elementgof a groupGis a set$${\mathscr {E}}(g)$$E(g)such that for every$$x\in G$$x∈Gall sufficiently long commutators$$[...[[x,g],g],\dots ,g]$$[...[[x,g],g],⋯,g]belong to$${\mathscr {E}}(g)$$E(g). (Thus,gis a left Engel element precisely when we can choose$${\mathscr {E}}(g)=\{ 1\}$$E(g)={1}.) We prove that if a finite groupGadmits an automorphism$$\varphi $$φof prime order coprime to |G| such that for some positive integermevery element of the centralizer$$C_G(\varphi )$$CG(φ)has a left Engel sink of cardinality at mostm, then the index of the second Fitting subgroup$$F_2(G)$$F2(G)is bounded in terms ofm. A right Engel sink of an elementgof a groupGis a set$${\mathscr {R}}(g)$$R(g)such that for every$$x\in G$$x∈Gall sufficiently long commutators$$[\ldots [[g,x],x],\dots ,x]$$[…[[g,x],x],⋯,x]belong to$${\mathscr {R}}(g)$$R(g). (Thus,gis a right Engel element precisely when we can choose$${\mathscr {R}}(g)=\{ 1\}$$R(g)={1}.) We prove that if a finite groupGadmits an automorphism$$\varphi $$φof prime order coprime to |G| such that for some positive integermevery element of the centralizer$$C_G(\varphi )$$CG(φ)has a right Engel sink of cardinality at mostm, then the index of the Fitting subgroup$$F_1(G)$$F1(G)is bounded in terms ofm.


1988 ◽  
Vol 38 (2) ◽  
pp. 207-220 ◽  
Author(s):  
David Easdown ◽  
Cheryl E. Praeger

The minimal (faithful) degree μ(G) of a finite group G is the least positive integer n such that G ≲ Sn. Clearly if H ≤ G then μ(H) ≤ μ(G). However if N ◃ G then it is possible for μ(G/N) to be greater than μ(G); such groups G are here called exceptional. Properties of exceptional groups are investigated and several families of exceptional groups are given. For example it is shown that the smallest exceptional groups have order 32.


2018 ◽  
Vol 25 (04) ◽  
pp. 579-584
Author(s):  
Chi Zhang ◽  
Wenbin Guo ◽  
Natalia V. Maslova ◽  
Danila O. Revin

For a positive integer n, we denote by π(n) the set of all prime divisors of n. For a finite group G, the set [Formula: see text] is called the prime spectrum of G. Let [Formula: see text] mean that M is a maximal subgroup of G. We put [Formula: see text] and [Formula: see text]. In this notice, using well-known number-theoretical results, we present a number of examples to show that both K(G) and k(G) are unbounded in general. This implies that the problem “Are k(G) and K(G) bounded by some constant k?”, raised by Monakhov and Skiba in 2016, is solved in the negative.


2014 ◽  
Vol 13 (08) ◽  
pp. 1450067 ◽  
Author(s):  
M. R. Darafsheh ◽  
S. M. Robati

Let G be a finite group. We define the derived covering number and the derived character covering number of G, denoted respectively by dcn (G) and dccn (G), as the smallest positive integer n such that Cn = G′ for all non-central conjugacy classes C of G and Irr ((χn)G′) = Irr (G′) for all nonlinear irreducible characters χ of G, respectively. In this paper, we obtain some results on dcn and dccn for a finite group G, such as the existence of these numbers and upper bounds on them.


2011 ◽  
Vol 10 (02) ◽  
pp. 187-190 ◽  
Author(s):  
H. AMIRI ◽  
S. M. JAFARIAN AMIRI

For a finite group G, let ψ(G) denote the sum of element orders of G. It is known that the maximum value of ψ on the set of groups of order n, where n is a positive integer, will occur at the cyclic group Cn. In this paper, we investigate the minimum value of ψ on the set of groups of the same order.


2014 ◽  
Vol 51 (1) ◽  
pp. 27-40
Author(s):  
M. Asaad ◽  
M. Al-Shomrani ◽  
A. Heliel

Let G be a finite group. A subgroup H of G is called an \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{H}$$ \end{document}-subgroup in G if NG(H) ∩ Hg ≤ H for all g ∈ G. A subgroup H of G is called a weakly \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{H}$$ \end{document}-subgroup in G if there exists a normal subgroup K of G such that G = HK and H ∩ K is an \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{H}$$ \end{document}-subgroup in G. In this article, we investigate the structure of a group G in which every subgroup with order pm of a Sylow p-subgroup P of G is a weakly \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{H}$$ \end{document}-subgroup in G, where m is a fixed positive integer. Our results improve and extend the main results of Skiba [13], Jaraden and Skiba [11], Guo and Wei [8], Tong-Veit [15] and Li et al. [12].


Sign in / Sign up

Export Citation Format

Share Document