Estimating adsorption isotherm parameters in chromatography via a virtual injection promoting double feed-forward neural network

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Chen Xu ◽  
Ye Zhang

Abstract The means to obtain the adsorption isotherms is a fundamental open problem in competitive chromatography. A modern technique of estimating adsorption isotherms is to solve a nonlinear inverse problem in a partial differential equation so that the simulated batch separation coincides with actual experimental results. However, this identification process is usually ill-posed in the sense that the uniqueness of adsorption isotherms cannot be guaranteed, and moreover, the small noise in the measured response can lead to a large fluctuation in the traditional estimation of adsorption isotherms. The conventional mathematical method of solving this problem is the variational regularization, which is formulated as a non-convex minimization problem with a regularized objective functional. However, in this method, the choice of regularization parameter and the design of a convergent solution algorithm are quite difficult in practice. Moreover, due to the restricted number of injection profiles in experiments, the types of measured data are extremely limited, which may lead to a biased estimation. In order to overcome these difficulties, in this paper, we develop a new inversion method – the virtual injection promoting double feed-forward neural network (VIP-DFNN). In this approach, the training data contain various types of artificial injections and synthetic noisy measurement at outlet, generated by a conventional physics model – a time-dependent convection-diffusion system. Numerical experiments with both artificial and real data from laboratory experiments show that the proposed VIP-DFNN is an efficient and robust algorithm.

2006 ◽  
Vol 16 (06) ◽  
pp. 423-434 ◽  
Author(s):  
MOHAMED ABDEL FATTAH ◽  
FUJI REN ◽  
SHINGO KUROIWA

Parallel corpora have become an essential resource for work in multi lingual natural language processing. However, sentence aligned parallel corpora are more efficient than non-aligned parallel corpora for cross language information retrieval and machine translation applications. In this paper, we present a new approach to align sentences in bilingual parallel corpora based on feed forward neural network classifier. A feature parameter vector is extracted from the text pair under consideration. This vector contains text features such as length, punctuate score, and cognate score values. A set of manually prepared training data has been assigned to train the feed forward neural network. Another set of data was used for testing. Using this new approach, we could achieve an error reduction of 60% over length based approach when applied on English–Arabic parallel documents. Moreover this new approach is valid for any language pair and it is quite flexible approach since the feature parameter vector may contain more/less or different features than that we used in our system such as lexical match feature.


Electrochem ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 42-57
Author(s):  
Devendrasinh Darbar ◽  
Indranil Bhattacharya

Estimating the accurate State of Charge (SOC) of a battery is important to avoid the over/undercharging and protect the battery pack from low cycle life. Current methods of SOC estimation use complex equations in the Extended Kalman Filter (EKF) and the equivalent circuit model. In this paper, we used a Feed Forward Neural Network (FNN) to estimate the SOC value accurately where battery parameters such as current, voltage, and charge are mapped directly to the SOC value at the output. A FNN could self-learn the weights with each training data point and update the model parameters such as weights and bias using a combination of two gradient descents (Adam). This model comprises the Dropout technique, which can have many neural network architectures by dropping the neuron/mode at each epoch/training cycle using the same weights and biases. Our FNN model was trained with data comprising different current rates and tested for different cycling data, for example, 5th, 10th, 20th, and 50th cycles and at a different cutoff voltage (4.5 V). The battery used for estimating the SOC value was a Na-ion based battery, which is highly non-linear, and it was fabricated in a house using Na0.67Fe0.5Mn0.5O2 (NFM) as a cathode and Na metal as a reference electrode. The FNN successfully estimated the SOC value for the highly non-linear nature of the Na-ion battery at different current rates (0.05 C, 0.1 C, 0.5 C, 1 C, 2 C), for different cycling data, and at higher cut-off voltage of –4.5 V Na+, reaching the R2 value of ~0.97–~0.99, ~0.99, and ~0.98, respectively.


2019 ◽  
Vol 34 (4) ◽  
pp. 985-997 ◽  
Author(s):  
Kirkwood A. Cloud ◽  
Brian J. Reich ◽  
Christopher M. Rozoff ◽  
Stefano Alessandrini ◽  
William E. Lewis ◽  
...  

Abstract A feed forward neural network (FFNN) is developed for tropical cyclone (TC) intensity prediction, where intensity is defined as the maximum 1-min average 10-m wind speed. This deep learning model incorporates a real-time operational estimate of the current intensity and predictors derived from Hurricane Weather Research and Forecasting (HWRF; 2017 version) Model forecasts. The FFNN model is developed with the operational constraint of being restricted to 6-h-old HWRF data. Best track intensity data are used for observational verification. The forecast training data are from 2014 to 2016 HWRF reforecast data and cover a wide variety of TCs from both the Atlantic and eastern Pacific Ocean basins. Cross validation shows that the FFNN increasingly outperforms the operational observation-adjusted HWRF (HWFI) in terms of mean absolute error (MAE) at forecast lead times from 3 to 57 h. Out-of-sample testing on real-time data from 2017 shows the HWFI produces lower MAE than the FFNN at lead times of 24 h or less and similar MAEs at later lead times. On the other hand, the 2017 data indicate significant potential for the FFNN in the prediction of rapid intensification (RI), with RI defined here as an intensification of at least 30 kt (1 kt ≈ 0.51 m s−1) in a 24-h period. The FFNN produces 4 times the number of hits in HWFI for RI. While the FFNN has more false alarms than the HWFI, Brier skill scores show that, in the Atlantic, the FFNN has significantly greater skill than the HWFI and probabilistic Statistical Hurricane Intensity Prediction System RI index.


2021 ◽  
Vol 118 ◽  
pp. 103766
Author(s):  
Ahmed J. Aljaaf ◽  
Thakir M. Mohsin ◽  
Dhiya Al-Jumeily ◽  
Mohamed Alloghani

Sign in / Sign up

Export Citation Format

Share Document