scholarly journals The application of neural network algorithm and embedded system in computer distance teach system

2022 ◽  
Vol 31 (1) ◽  
pp. 148-158
Author(s):  
Qin Qiu

Abstract The computer distance teaching system teaches through the network, and there is no entrance threshold. Any student who is willing to study can log in to the network computer distance teaching system for study at any free time. Neural network has a strong self-learning ability and is an important part of artificial intelligence research. Based on this study, a neural network-embedded architecture based on shared memory and bus structure is proposed. By looking for an alternative method of exp function to improve the speed of radial basis function algorithm, and then by analyzing the judgment conditions in the main loop during the algorithm process, these judgment conditions are modified conditionally to reduce the calculation scale, which can double the speed of the algorithm. Finally, this article verifies the function, performance, and interface of the computer distance education system.

2013 ◽  
Vol 694-697 ◽  
pp. 1958-1963 ◽  
Author(s):  
Xian Wei ◽  
Jing Dong Zhang ◽  
Xue Mei Qi

The robots identify, locate and install the workpiece in FMS system by identifying the characteristic information of target workpiece. The paper studied the recognition technology of complex shape workpiece with combination of BP neural network and Zernike moment. The strong recognition ability of Zernike moment can extract the characteristic. The good fault tolerance, classification, parallel processing and self-learning ability of BP neural network can greatly improve the accurate rate of recognition. Experimental results show the effectiveness of the proposed method.


Author(s):  
Shenping Xiao ◽  
Zhouquan Ou ◽  
Junming Peng ◽  
Yang Zhang ◽  
Xiaohu Zhang ◽  
...  

Based on a single-phase photovoltaic grid-connected inverter, a control strategy combining traditional proportional–integral–derivative (PID) control and a dynamic optimal control algorithm with a fuzzy neural network was proposed to improve the dynamic characteristics of grid-connected inverter systems effectively. A fuzzy inference rule was established after analyzing the proportional, integral, and differential coefficients of the PID controller. A fuzzy neural network was applied to adjust the parameters of the PID controller automatically. Accordingly, the proposed dynamic optimization algorithm was deduced in theory. The simulation and experimental results showed that the method was effective in making the system more robust to external disruption owing to its excellent steady-state adaptivity and self-learning ability.


2013 ◽  
Vol 765-767 ◽  
pp. 2004-2007
Author(s):  
Su Ying Zhang ◽  
Ying Wang ◽  
Jie Liu ◽  
Xiao Xue Zhao

Double inverted pendulum system is nonlinear and unstable. Fuzzy control uses some expert's experience knowledge and learns approximate reasoning algorithm. For it does not depend on the mathematical model of controlled object, it has been widely used for years. In practical engineering applications, most systems are nonlinear time-varying parameter systems. As the fuzzy control theory lacks of on-line self-learning and adaptive ability, it can not control the controlled object effectively. In order to compensate for these defects, it introduced adaptive, self-organizing, self-learning functions of neural network algorithm. We called it adaptive neural network fuzzy inference system (ANFIS). ANFIS not only takes advantage of the fuzzy control theory of abstract ability, the nonlinear processing ability, but also makes use of the autonomous learning ability of neural network, the arbitrary function approximation ability. The controller was applied to double inverted pendulum system and the simulation results showed that this method can effectively control the double inverted pendulum system.


2014 ◽  
Vol 945-949 ◽  
pp. 2266-2271
Author(s):  
Li Hua Wang ◽  
Xiao Qiang Wu

In space laser communication tracking turntable work environment characteristics, we design a neural network PID control system which makes the system’s parameter self-tuning. The control system cans self-tune parameters under the changes of the object’ mathematic model, it solves the problem for the control object’s model changes under the space environment. It also looks for method for optimum control through the function of neural network's self-learning in order to solve the problem of the precision’s decline which arouse from vibration and disturbance. The simulation experiments confirmed the self-learning ability of neural network, and described the neural PID controller dynamic performance is superior to the classical PID controller through the output characteristic curves contrast.


2011 ◽  
Vol 271-273 ◽  
pp. 441-447
Author(s):  
Xiao Mei Chen ◽  
Dang Gang ◽  
Tian Yang

The algorithm of anomaly detection for large scale networks is a key way to promptly detect the abnormal traffic flows. In this paper, priori triggered BP neural network algorithm(PBP) is analyzed for the purpose of dealing with the problems caused by typical algorithms that are not able to adapt and learn; detect with high precision; provide high level of correctness. PBP uses K-Means and PCA to trigger self-adapting and learning ability, and also, it uses historical neuron parameter to initialize the neural network, so that it use the trained network to detect the abnormal traffic flows. According to experiments, PBP can obtain a higher level of correctness of detection than priori algorithm, and it can adapt itself according to different network environments.


2013 ◽  
Vol 394 ◽  
pp. 393-397
Author(s):  
Jing Ma ◽  
Wen Hui Zhang ◽  
Zhi Hua Zhu

Neural network self-learning optimization PID control algorithm is put forward for free-floating space robot with flexible manipulators. Firstly, dynamics model of space flexible robot is established, then, neural network with good learning ability is used to approach non-linear system. Optimization algorithm of network weights is designed to speed up the learning speed and the adjustment velocity. Error function is offered by PID controller. The neural network self-learning PID control method can improve the control precision.


Author(s):  
Huihui Wang ◽  
Ruyang Mo

Artificial Neural Networks (ANN) can accurately identify and learn the potential relationship between input and output, and have self-learning capabilities and high fault tolerance, which can be used to predict or optimize the performance of complex systems. Reactive distillation integrates reaction and rectification into one device, so that the two processes occur at the same time and at the same place, but at the same time it also produces highly nonlinear robust behavior, making its process control and optimization unable to use conventional methods. Instead, neural network algorithms must be used. This paper briefly describes the research progress of neural network algorithms and reactive distillation technology, and summarizes the application of neural network algorithms in reactive distillation, aiming to provide reference for the development and innovation of industry technology.


Author(s):  
Jinwei Lu ◽  
Ningrui Zhao

Artificial neural network modeling does not need to consider the mechanism. It can map the implicit relationship between input and output and predict the performance of the system well. At the same time, it has the advantages of self-learning ability and high fault tolerance. The gas-liquid two phases in the rectification tower conduct interphase heat and mass transfer through countercurrent contact. The functional relationship between the product concentration at the top and bottom of the tower and the process parameters is extremely complex. The functional relationship can be accurately controlled by artificial neural network algorithms. The key components of the propylene distillation tower are the propane concentration at the top of the tower and the propylene concentration at the bottom of the tower. Accurate measurement of them plays a key role in increasing propylene yield in ethylene production enterprises. This article mainly introduces the development process of neural network model and its application progress in propylene distillation tower.


2014 ◽  
Vol 631-632 ◽  
pp. 79-85 ◽  
Author(s):  
Feng Yu ◽  
Zhi Qing Wang ◽  
Xiao Zhong Xu

Aiming at the limitations of a single neural network for effective gas load forecasting, a combinational model based on wavelet BP neural network optimized by genetic algorithm is proposed. The problems that traditional BP algorithm converges slowly and easily falls into local minimum are overcame. The wavelet neural network strengthens the function approximation capacity of the network by combining the well time-frequency local feature of wavelet transform with the self-learning ability of neural network. And optimized by the real coded genetic algorithm, the network converges more quick than non-optimized one. This proposed model is applied to daily gas load forecasting for Shanghai and the simulation results indicate that this algorithm has excellent prediction effect.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Weikuan Jia ◽  
Dean Zhao ◽  
Tian Shen ◽  
Chunyang Su ◽  
Chanli Hu ◽  
...  

When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer’s neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.


Sign in / Sign up

Export Citation Format

Share Document