Performance analysis of long band passive optical network using amplifier spontaneous noise and fiber Bragg gratings

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Ranbir Singh Mohal ◽  
Rajbir Kaur ◽  
Charanjit Singh

Abstract Long band (L-Band) passive optical networks (PONs) are attracting a lot of attention these days, thanks to rising capacity demands. Because of PONs requesting more and more channels, fault detection/monitoring is critical. Fault detection in the conventional band (C-Band) employing reflecting Fiber Bragg Gratings (FBGs) and a probe signal integrating an additional amplified spontaneous noise (ASEN) source has been frequently demonstrated. However, interference occurs when ASEN and transmitter signals are in the same wavelength band, and adding additional ASEN sources to the network raises the overall cost. So, in L-Band PONs, a cost-effective, low-complexity fault detection/monitoring system is required. Therefore, in this work, a fault detection/monitoring system for L-Band PON using C-Band ASEN from inline erbium doped fiber amplifier (EDFA) and dual purpose FBG, i.e. (1) ASEN reflection for fault monitoring and (2) dispersion compensation is proposed. A 4 × 10 Gbps L-Band PON is investigated over 40 km feeder fiber (FF) and 1 km drop fibers (DFs) that serve 32 optical network units (ONUs)/different input powers, dispersion values, and laser linewidths in terms of reflective power of FBGs, eye opening factor, and bit error rate (BER), respectively.

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Simarpreet Kaur ◽  
Mahendra Kumar ◽  
Ashu Verma

AbstractWe demonstrated a full duplex hybrid passive optical network and indoor optical wireless system employing coherent optical frequency division multiplexing. To accomplish reliable transmission in passive optical networks integrated visible-light communication (VLC), yellow light-emitting diode and infrared LED is used in downstream and upstream, respectively, for intra building network. In order to support high data rate, pulse-width reduction scheme based on dispersion compensation fiber is incorporated and system successfully covered the distance of 50 km. A data stream at the rate of 30 Gb/s is transmitted for each user out of eight users. VLC-supported users are catered with the bit rate of 1.87 Gb/s over 150 cm and in order to realize a low-cost system, visible and infrared LEDs are used in downlink and uplink, respectively.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shippu Sachdeva ◽  
Jagjit Malhotra ◽  
Manoj Kumar

Abstract Long reach Passive optical network (LR-PON) is an attractive solution to fulfill the ever-increasing bandwidth requirements due to propelling internet applications and competent to serve distant optical network units (ONUs). Wavelength division multiplexed (WDM) PON systems experience distance and performance limiting constraint termed as Dispersion. In order to compensate dispersion effects, Fiber bragg gratings (FBGs) and Dispersion compensation fibers (DCFs) are incorporated extensively in PONs. Performance of DCF is better than FBG in terms of dispersion compensation, but it comes at the cost of 3 $/m (very expensive). Therefore, long reach ultra dense WDM-PON systems are needed with incorporation of economical and high performance DCMs. Three newly constructed hybrid DCMs are investigated such as FBG-DCF (module 1), OPC-DCF (module 2), and FBG-DCF-OPC (module 3) in WDM-PON to get optimal DCM in terms of dispersion compensation efficiency (DCE) and economical operation. As per author’s best knowledge, DCE calculations and performance enhancement with cost reduction using hybrid DCMs in ultra dense WDM-PON, is not reported so far. WDM-PON consists of 32 channels at 25 GHz channel spacing is analyzed for 300 km link distance at 10 Gbps/channel using different hybrid DCMs. It is perceived that highest DCE of 70% is given by module 3 with maximum cost reduction of 19.84%. DCE performance of three modules is as follows: Module 3 (DCE 70%), Module 1 (DCE 55%), Module 2 (DCE 45%) and cost reduction/increase from conventional module by 19.84% reduction (Module 3), 19.05% reduction (Module 1), and increase 10.5% (Module 2). Hence, Module 3 is preferred for long reach WDM-PON to get high performance with lesser cost.


Author(s):  
L. Jerart Julus ◽  
D. Manimegalai ◽  
S. Sibi Chakkaravarthy

This paper presents a Filter Bank Multicarrier (FBMC), a viable waveform candidate for fifth generation (5G) communications using Staggered-Modulated Multitone (SMT). FBMC is preferred in optical communication because of its ability to work without Cyclic Prefix (CP). In any case, the operation of FBMC in optical access systems with Artificial Neural Networks (ANNs) has not been broadly explored either downstream or upstream. This work presents an advanced Nonlinear Feed-Forward Equalizer (NFFE) that makes use of multilayer ANN for dispersion compensation. ANN is trained to act as a filter with an extensive equalizer training which has the ability to mitigate dispersion and increase the performance of the system. The simulation work is used to study the performance of intensity modulated FBMC system with direct detection in Long Reach-Passive Optical Networks (LR-PONs).The transmission data rate is varied between 8 and 10[Formula: see text]Gbps with the optical fiber length from 30 to 90[Formula: see text]km of Standard Single Mode Fiber (SSMF). The obtained result suggests that FBMC system with ANN-NFFE equalizer fundamentally builds the resilience to the Chromatic Dispersion (CD) distortion, and a CP-less transmission is possible upto 90[Formula: see text]km.


2014 ◽  
Vol 631-632 ◽  
pp. 860-863 ◽  
Author(s):  
Xiao Xue Gong ◽  
Hui Li ◽  
Peng Chao Han ◽  
Yu Fang Zhou

Orthogonal Frequency Division Multiplexing (OFDM) has gained great attention in the next generation Long-Reach Passive Optical Network (LR-PON) due to its high spectrum efficiency, flexible resource allocation and natural compatibility with Digital Signal Processing (DSP)-based implementation. In this paper, we propose and demonstrate a 40Gbit/s direct-detection long reach OFDM-PON system for downstream transmission over 100km standard signal mode fiber (SSMF). By using a simple Least Square (LS) method for the channel estimation, our proposed system achieves high bit rate without the need for chromatic dispersion compensation.


2021 ◽  
Author(s):  
Souheil Kneifati

Competition for delivering high-bandwidth "multi-play" services (video, voice, data) is on constant increase. Advanced service delivery requires a higher bandwidth pipe to the end user through passive optical network (PON) technologies. The two major PON standards GPON is an International Telecommunication Union - Telecommunication Standardization Sector (ITU-T) and EPON is a standard developed by the Institute of Electrical and Electronics Engineers (IEEE). This project compares and looks at the choices and challenges service providers face as they bring new PON technology possibilities to their customers and analyze these two standards in terms of their performance, physical properties, implementation and testing requirements. It also discusses the evolution paths for each of the standards and the challenges for such evolution. The final chapter will include the conclusions, some final thoughts, suggestions and recommendations for new projects implementation.


2003 ◽  
Vol 28 (10) ◽  
pp. 786 ◽  
Author(s):  
Yisi Liu ◽  
Liang Dong ◽  
J. J. Pan ◽  
Claire Gu

Sign in / Sign up

Export Citation Format

Share Document