scholarly journals Long non-coding RNA FOXD2-AS1 promotes cell proliferation, metastasis and EMT in glioma by sponging miR-506-5p

Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 921-931
Author(s):  
Juan Zhao ◽  
Xue-Bin Zeng ◽  
Hong-Yan Zhang ◽  
Jie-Wei Xiang ◽  
Yu-Song Liu

AbstractLong non-coding RNA forkhead box D2 adjacent opposite strand RNA 1 (FOXD2-AS1) has emerged as a potential oncogene in several tumors. However, its biological function and potential regulatory mechanism in glioma have not been fully investigated to date. In the present study, RT-qPCR was conducted to detect the levels of FOXD2-AS1 and microRNA (miR)-506-5p, and western blot assays were performed to measure the expression of CDK2, cyclinE1, P21, matrix metalloproteinase (MMP)7, MMP9, N-cadherin, E-cadherin and vimentin in glioma cells. A luciferase reporter assay was performed to verify the direct targeting of miR-506-5p by FOXD2-AS1. Subsequently, cell viability was analyzed using the CCK-8 assay. Cell migration and invasion were analyzed using Transwell and wound healing assays, respectively. The results demonstrated that FOXD2-AS1 was significantly overexpressed in glioma cells, particularly in U251 cells. Knockdown of FOXD2-AS1 in glioma cells significantly inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) and regulated the expression of CDK2, cyclinE1, P21, MMP7 and MMP9. Next, a possible mechanism for these results was explored, and it was observed that FOXD2-AS1 binds to and negatively regulates miR-506-5p, which is known to be a tumor-suppressor gene in certain human cancer types. Furthermore, overexpression of miR-506-5p significantly inhibited cell proliferation, migration, invasion and EMT, and these effects could be reversed by transfecting FOXD2-AS1 into the cells. In conclusion, our data suggested that FOXD2-AS1 contributed to glioma proliferation, metastasis and EMT via competitively binding to miR-506-5p. FOXD2-AS1 may be a promising target for therapy in patients with glioma.

2020 ◽  
Author(s):  
Yuxin Zhao ◽  
Zhaoxia Wang ◽  
Meili Gao ◽  
Xuehong Wang ◽  
Hui Feng ◽  
...  

Abstract Background: Long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was reported as an oncogene in many tumors including retinoblastoma (RB). This research mainly focused on the functions and mechanism of MALAT1 in RB.Methods: The levels of MALAT1, microRNA-655-3p (miR-655-3p), and ATPase family AAA domain containing 2 (ATAD2) in RB tissues and cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability and apoptotic rate were monitored via cell counting kit 8 (CCK8) assay and flow cytometry, respectively. The protein levels of p21, CyclinD1, B-cell lymphoma-2 (Bcl-2), cleaved-casp-3, E-cadherin, Ncadherin, Vimentin, and ATAD2 were detected by Western blot assay. Transwell assay was performed to estimate the abilities of migration and invasion. The interactions between miR-655-3p and MALAT1 or ATAD2 were predicted by starBase. Dual-luciferase reporter assay was constructed to verify these interactions. The mice model experiments were established to validate the effects of MALAT1 in vivo.Results: MALAT1and ATAD2 were significantly increased while the level of miR-655-3p was remarkably decreased in RB tissues and cells. MALAT1 knockdown inhibited cell proliferation, metastasis, and epithelial-mesenchymal transition (EMT) but promoted apoptosis via miR-655-3p in vitro, and blocked xenograft tumor growth in vivo. MALAT1 was validated to sponge miR-655-3p and ATAD2 was verified as a candidate of miR-655-3p. MiR-655-3p overexpression inhibited cell proliferation but promoted apoptosis by targeting ATAD2. MALAT1 silencing affected cell behaviors by regulating ATAD2. MALAT1 depletion down-regulated ATAD2 expression via miR-655-3p in RB cells.Conclusion: MALAT1 positively regulated ATAD2 to accelerate cell proliferation but retard apoptosis by sponging miR-655-3p in RB cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xianghai Meng ◽  
Zhenjun Zhang ◽  
Lin Chen ◽  
Xi Wang ◽  
Qingguo Zhang ◽  
...  

ObjectivesOsteosarcoma (OS) is a type of bone malignancy. This study attempted to explore the effect of long non-coding RNA TTN-AS1 (TTN-AS1) on OS and to determine its molecular mechanisms.MethodsThe expression of TTN-AS1, microRNA-16-1-3p (miR-16-1-3p), and transcription factor activating enhancer binding protein 4 (TFAP4) in OS was assessed using qRT-PCR. The OS cell proliferation, migration, and invasion were measured using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound-healing, and transwell assays. N-cadherin and MMP-2 protein level was determined with western blot. Interactions between TTN-AS1 and miR-16-1-3p or TFAP4 and miR-16-1-3p were confirmed using the dual-luciferase reporter assay. Additionally, an OS xenograft tumor model was constructed to assess the effect of TTN-AS1 on tumor growth.ResultsTTN-AS1 and TFAP4 expression was increased in OS, while miR-16-1-3p expression was decreased. TTN-AS1 silencing restrained OS cell proliferation, migration, invasion, N-cadherin and MMP-2 protein expression, and hindered tumor growth. MiR-16-1-3p overexpression retarded the malignant behavior of OS cells. TTN-AS1 played a carcinostatic role by down-regulating miR-16-1-3p in the OS cells. Moreover, miR-16-1-3p inhibition or TFAP4 elevation weakened the suppressive effect of TTN-AS1 silencing on OS cell tumor progression.ConclusionTTN-AS1 promoted the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of OS cells via mediating the miR-16-1-3p/TFAP4 axis. TTN-AS1 may be a critical target for improving OS.


Author(s):  
Zihao Chen ◽  
Yong Li ◽  
Bibo Tan ◽  
Fang Li ◽  
Qun Zhao ◽  
...  

Gastric cancer (GC), as a common gastrointestinal tumor, is an important cause of death from cancer all around the world. Long non-coding RNAs (lncRNAs), a novel class of transcripts, have attracted great attention of researchers. However, the mechanisms of the clinical significance of most lncRNAs in human cancer are mainly undocumented. This research desires to explore the clinical significance, biological function, and mechanism of Lnc_ASNR (apoptosis suppressing-non-coding RNA) in GC. Cell proliferation, cell cycle, cell migration, and invasion abilities were respectively determined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT), flow cytometry, wound healing, and Transwell assay (Sigma-Aldrich, St. Louis, MO, United States). The association of Lnc_ASNR, miR-519e-5p, and fibroblast growth factor receptor 2 (FGFR2) was evaluated via luciferase reporter experiments. The tumor xenograft assay was conducted to confirm the results of cell experiments. High expressed Lnc_ASNR was detected in both GC cells and tissues using qRT-PCR. Downregulated Lnc_ASNR could reduce proliferation, migration, and invasion in GC cells, while upregulated Lnc_ASNR could promote the cell proliferation, migration, and invasion. Moreover, the effect of Lnc_ASNR on migration and invasion ability is closely related to epithelial-mesenchymal transition (EMT). The bioinformatics analysis, luciferase assay, and Western blot demonstrated that Lnc_ASNR inhibited miR-519e-5p expression but increased FGFR2 expression. Lnc_ASNR and FGFR2 were both targeted to miR-519e-5p, and they were negatively correlated with the expression of miR-519e-5p. All investigations indicated that Lnc_ASNR functioned as a ceRNA targeting miR-519e-5p and facilitated GC development by regulating the pathway of miR-519e-5p/FGFR2.


2018 ◽  
Vol 49 (4) ◽  
pp. 1403-1419 ◽  
Author(s):  
Yunxiuxiu Xu ◽  
Xinxi Luo ◽  
Wenguang He ◽  
Guangcheng Chen ◽  
Yanshan Li ◽  
...  

Background/Aims: To investigate the biological roles and underlying molecular mechanisms of long non-coding RNA (lncRNA) PVT1 in Hepatocellular carcinoma (HCC). Methods: qRT-PCR was performed to measure the expression of miRNA and mRNA. Western blot was performed to measure the protein expression. CCK-8 assay was performed to determine cell proliferation. Flow cytometry was performed to detect cell apoptosis. Wounding-healing assay and Transwell assay was performed to detect cell migration and invasion. Dual luciferase reporter assay was performed to verify the target relationship. Quantichrom iron assay was performed to check uptake level of cellular iron. Results: PVT1 expression was up-regulated in HCC tissues and cell lines. Function studies revealed that PVT1 knockdown significantly suppressed cell proliferation, migration and invasion, and induced cell apoptosis in vitro. Furthermore, PVT1 could directly bind to microRNA (miR)-150 and down-regulate miR-150 expression. Hypoxia-inducible protein 2 (HIG2) was found to be one target gene of miR-150, and PVT1 knockdown could inhibit the expression of HIG2 through up-regulating miR-150 expression. In addition, the expression of miR-150 was down-regulated, while the expression of HIG2 was up-regulated in HCC tissues and cell lines. Moreover, inhibition of miR-150 could partly reverse the biological effects of PVT1 knockdown on proliferation, motility, apoptosis and iron metabolism in vitro, which might be associated with dysregulation of HIG2. In vivo results showed that PVT1 knockdown suppressed tumorigenesis and iron metabolism disorder by regulating the expression of miR-150 and HIG2. Conclusion: Taken together, the present study demonstrates that PVT1/miR-150/HIG2 axis may lead to a better understanding of HCC pathogenesis and provide potential therapeutic targets for HCC.


2018 ◽  
Vol 48 (5) ◽  
pp. 1928-1941 ◽  
Author(s):  
Chuan He ◽  
Zhigang Liu ◽  
Li Jin ◽  
Fang Zhang ◽  
Xinhao Peng ◽  
...  

Background/Aims: MicroRNA-142-3p (miR-142-3p) is dysregulated in many malignancies and may function as a tumor suppressor or oncogene in tumorigenesis and tumor development. However, few studies have investigated the clinical significance and biological function of miR-142-3p in hepatocellular carcinoma (HCC). Methods: The expression levels of taurine upregulated gene 1 (TUG1), miR-142-3p, and zinc finger E-box-binding homeobox 1 (ZEB1) were evaluated in HCC tissues and cell lines by quantitative real-time PCR. MTT and colony formation assays were used to detect cell proliferation ability, transwell assays were used to assess cell migration and invasion, and luciferase reporter assays were used to examine the interaction between the long noncoding RNA TUG1 and miR-142-3p. Tumor formation was evaluated through in vivo experiments. Results: miR-142-3p was significantly downregulated in HCC tissues, but TUG1 was upregulated in HCC tissues. Knockdown of TUG1 and upregulation of miR-142-3p inhibited cell proliferation, cell migration, cell invasion, and the epithelial-mesenchymal transition (EMT). miR-142-3p was found to be a prognostic factor of HCC, and the mechanism by which TUG1 upregulated ZEB1 was via direct binding to miR-142-3p. In vivo assays showed that TUG1 knockdown suppressed cell proliferation and the EMT in nude mice. Conclusion: The results of this study suggest that the TUG1/miR-142-3p/ ZEB1 axis contributes to the formation of malignant behaviors in HCC.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Hongwei Ma ◽  
Tianshi Ma ◽  
Miao Chen ◽  
Zigui Zou ◽  
Zhihong Zhang

Pseudogenes were once regarded as transcriptionally inactive and without specific molecular function. However, current evidence shows that pseudogene-derived long non-coding RNAs (lncRNAs) may be crucial regulators of human cancer development, including gastric cancer (GC). In the present study, we report that a pseudogene-derived lncRNA named surfactant associated 1, pseudogene (SFTA1P), which is 693-nt long, was significantly down-regulated in GC tissues compared with that in the adjacent normal tissues. In addition, decreased SFTA1P expression was strongly correlated with advanced tumor lymph node metastasis (TNM) stage, larger tumor size, lymphatic metastasis, and poor prognosis of patients with GC. Moreover, gain-of-function experiments revealed that the overexpression of SFTA1P inhibits cell proliferation, migration, and invasion, thus verifying the tumor inhibitory role of SFTA1P in GC. Furthermore, we investigated the potential action mechanism of SFTA1P. Our results showed that down-regulation of SFTA1P may be associated with decreased TP53 expression. In summary, our work suggests that the pseudogene-derived lncRNA SFTA1P functions as a tumor suppressor in GC and thus may act as a potential diagnostic and therapeutic target of GC.


2018 ◽  
Vol 48 (2) ◽  
pp. 838-846 ◽  
Author(s):  
Yuan He ◽  
Hao Hu ◽  
Yandong Wang ◽  
Hao Yuan ◽  
Zipeng Lu ◽  
...  

Background/Aims: Mounting evidence suggests that epitranscriptional modifications regulate multiple cellular processes. N6-Methyladenosine (m6A), the most abundant reversible methylation of mRNA, has critical roles in cancer pathogenesis. However, the mechanisms and functions of long non-coding RNA (lncRNA) methylation remain unclear. Pancreatic cancer resulted in 411,600 deaths globally in 2015. By the time of pancreatic cancer diagnosis, metastasis has often occurred in other parts of the body. The present study sought to investigate lncRNA m6A modification and its roles in pancreatic cancer. Methods: Differential expression between cancer cells and matched normal cells was evaluated to identify candidate lncRNAs. The lncRNA KCNK15-AS1 was detected in cancer tissues and various pancreatic cells using RT-qPCR. KCNK15-AS1 was transfected into cells to explore its role in migration and invasion. Then, m6A RNA immunoprecipitation was performed to detect methylated KCNK15-AS1 in tissues and cells. Epithelial–mesenchymal transition (EMT) markers were used to evaluate KCNK15-AS1-mediated EMT processes. Results: KCNK15-AS1 was downregulated in pancreatic cancer tissues compared with paired adjacent normal tissues. KCNK15-AS1 inhibited migration and invasion in MIA PaCa-2 and BxPC-3 cells. Furthermore, total RNA methylation in cancer cells was significantly enriched relative to that in immortalized human pancreatic duct epithelial (HPDE6-C7) cells. In addition, the m6A eraser ALKBH5 was downregulated in cancer cells, which can demethylate KCNK15-AS1 and regulate KCNK15-AS1-mediated cell motility. Conclusion: Our results have revealed a novel mechanism by which ALKBH5 inhibits pancreatic cancer motility by demethylating lncRNA KCNK15-AS1, identifying a potential therapeutic target for pancreatic cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xin Gong ◽  
Meng-Yi Huang

Objective. Mounting evidence has elaborated the implication of long noncoding RNAs (lncRNAs) in tumorigenesis of several cancers, including glioma. However, little was known about the mechanism of lncRNA maternally expressed gene 3 (MEG3) in the development and progression of glioma. This work is designed to explore the effect of MEG3 on glioma progression and its possible mechanism. Methods. Expressions of lncRNA-MEG3 and SMARCB1 were detected in human glioblastoma U87 and U251 cell lines. Gain and loss of function of MEG3 or/and miR-6088 was performed in U87 and U251 cells to observe its effect on cell proliferation and migration as well as on epithelial-mesenchymal transition (EMT) related markers. Luciferase reporter gene assay was employed to inspect the interactions among MEG3, miR-6088, and SMARCB1. Results. MEG3 and SMARCB1 expressions were downregulated in glioma cells. Transfection of pcDNA3.1-MEG3 or pcDNA3.1-SMARCB1 plasmids could clearly block cell proliferation, migration, and EMT progression. MEG3 functions as a sponge for miR-6088, while SMARCB1 is a downstream protein of miR-6088. Transfection of miR-6088 mimic or si-SMARCB1 could obviously reverse the favorable effect of pcDNA3.1-MEG3 on glioma progression. Conclusion. Collectively, the evidence in this study indicated that MEG3 was downregulated in glioma cells and inhibited proliferation and migration of glioma cells via regulating miR-6088/SMARCB1 axis.


Sign in / Sign up

Export Citation Format

Share Document