scholarly journals Is there any effect on imprinted genes H19, PEG3, and SNRPN during AOA?

Open Medicine ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. 174-184
Author(s):  
Rong Liang ◽  
Fang Fang ◽  
Sen Li ◽  
Xi Chen ◽  
Xiaohong Zhang ◽  
...  

Abstract Assisted oocyte activation (AOA) has been proposed as an effective technique to overcome the problem of impaired fertilization after intracytoplasmic sperm injection (ICSI) but the safety of AOA remains a concern. We aimed to investigate if AOA induces imprinting effects on embryos. We used 13 cleavage embryos, nine blastocysts, and eight placentas from 15 patients. The subjects were divided into six groups by tissue type and with or without AOA. The methylation levels of imprinted genes (H19, paternally expressed gene [PEG3] and small nuclear ribonucleoprotein polypeptide N [SNRPN]) were tested by pyrosequencing. We observed different methylation levels among cleavage embryos. The variability was much more remarkable between cleavage embryos than blastocysts and placenta tissues. The methylation levels were especially higher in SNRPN and lower in the H19 gene in AOA embryos than those without AOA. No significant difference was found either among blastocysts or among placenta tissues regardless of AOA. The methylation levels of the three genes in blastocysts were very similar to those in the placenta. Compared to conventional ICSI, AOA changed imprinting methylation rates at H19 and SNRPN in cleavage embryos but not in the blastocyst stage and placenta. We recommend that blastocyst transfer should be considered for patients undergoing AOA during in vitro fertilization.

2005 ◽  
Vol 17 (2) ◽  
pp. 300
Author(s):  
T. Somfai ◽  
K. Kikuchi ◽  
S.Y. Medvedev ◽  
A. Onishi ◽  
M. Iwamoto ◽  
...  

In vitro fertilization (IVF) and embryonic development of mature and meiotically arrested porcine oocytes were compared in this study. After in vitro maturation (IVM) for 48 h of cumulus-oocyte complexes, 75.4% (n = 442) of them extruded a visible polar body (PB). Most oocytes with a polar body (PB+ group) were found to be at metaphase II (M-II) stage (91.4%). Most oocytes without a visible polar body (PB− group, n = 144) appeared to be arrested at the germinal vesicle (GV) (41.6%) and first meiotic metaphase (M-I) (34.0%) stages. After IVF of oocytes (the day of IVF = Day 0), there was no significant difference between PB+ and PB− groups in rates of sperm penetration, monospermy, and oocyte activation after the penetration. Embryonic development was assessed by staining with 1% orcein. On Day 2, although there was no difference between the embryo cleavage in PB+ (n = 447) and PB− (n = 217) groups (47.0% and 35.9%, respectively), PB+ embryos had more cells than the PB− embryos (3.37 and 2.81 cells, respectively) (P < 0.05; ANOVA). On Day 4, the cleavage rate of PB+ embryos was higher than that of PB− embryos (45.4% and 24.3%, respectively), and PB+ embryos had more cells than the PB− embryos (8.26 and 6.0 cells, respectively) (P < 0.05; ANOVA). On Day 6, a significantly higher number of PB+ embryos developed to the blastocyst stage than that of the PB− embryos (34.6% and 20.7%, respectively) (P < 0.05). However, by subtracting the GV oocytes from the PB− group, there was no difference in blastocyst rates between the M-I arrested and M-II oocytes (35.3% and 34.6%, respectively). The number of blastomer nuclei in embryos obtained from the PB+ group (52.0) was significantly higher than that of the PB− group (29.1); however, the proportion of inner cell mass and trophectoderm cells in PB+ and PB− blastocysts did not differ significantly (1:1.9 and 1:2.2, respectively) (P < 0.05). Chromosome analysis revealed that PB+ blastocysts had significantly more diploid blastomeres (69.7%) than PB− blastocysts (44.0%), whereas PB− blastocysts had significantly more triploid cells (34.0%) compared with PB+ oocytes (8.4%)(P < 0.05; χ2 test). These results indicate that porcine oocytes arrested at the M-I stage undergo cytoplasmic maturation during culture and have the same ability to develop to blastocysts after IVF as M-II oocytes but with a lower cell number; the latter might be caused by the slower embryonic development.


1994 ◽  
Vol 14 (9) ◽  
pp. 6337-6349 ◽  
Author(s):  
S E Wells ◽  
M Ares

Binding of U2 small nuclear ribonucleoprotein (snRNP) to the pre-mRNA is an early and important step in spliceosome assembly. We searched for evidence of cooperative function between yeast U2 small nuclear RNA (snRNA) and several genetically identified splicing (Prp) proteins required for the first chemical step of splicing, using the phenotype of synthetic lethality. We constructed yeast strains with pairwise combinations of 28 different U2 alleles with 10 prp mutations and found lethal double-mutant combinations with prp5, -9, -11, and -21 but not with prp3, -4, -8, or -19. Many U2 mutations in highly conserved or invariant RNA structures show no phenotype in a wild-type PRP background but render mutant prp strains inviable, suggesting that the conserved but dispensable U2 elements are essential for efficient cooperative function with specific Prp proteins. Mutant U2 snRNA fails to accumulate in synthetic lethal strains, demonstrating that interaction between U2 RNA and these four Prp proteins contributes to U2 snRNP assembly or stability. Three of the proteins (Prp9p, Prp11p, and Prp21p) are associated with each other and pre-mRNA in U2-dependent splicing complexes in vitro and bind specifically to synthetic U2 snRNA added to crude splicing extracts depleted of endogenous U2 snRNPs. Taken together, the results suggest that Prp9p, -11p, and -21p are U2 snRNP proteins that interact with a structured region including U2 stem loop IIa and mediate the association of the U2 snRNP with pre-mRNA.


1989 ◽  
Vol 9 (10) ◽  
pp. 4479-4487
Author(s):  
M Cotten ◽  
G Schaffner ◽  
M L Birnstiel

A comparative analysis of ribozyme, antisense RNA, and antisense DNA inhibitors of the in vitro small nuclear ribonucleoprotein U7-dependent histone pre-mRNA processing reaction was performed. RNA molecules complementary to the U7 sequence inhibited in vitro processing of histone pre-mRNA at a sixfold excess over U7. Single-stranded DNA complementary to the entire U7 sequence inhibited the reaction at a 60-fold excess over U7, while a short, 18-nucleotide DNA molecule complementary to the 5' end of U7 inhibited the processing reaction at a 600-fold excess. A targeted ribozyme was capable of specifically cleaving the U7 small nuclear ribonucleoprotein in a nuclear extract and inhibited the U7-dependent processing reaction, but in our in vitro system it required a 1,000-fold excess over U7 for complete inhibition of processing.


1987 ◽  
Vol 7 (1) ◽  
pp. 495-503 ◽  
Author(s):  
L C Ryner ◽  
J L Manley

Using a pre-RNA containing the simian virus 40 early introns and poly(A) addition site, we investigated several possible requirements for accurate and efficient mRNA 3' end cleavage and polyadenylation in a HeLa cell nuclear extract. Splicing and 3' end formation occurred under the same conditions but did not appear to be coupled in any way in vitro. Like splicing, 3' end cleavage and polyadenylation each required Mg2+, although spermidine could substitute in the cleavage reaction. Additionally, cleavage of this pre-RNA, but not others, was totally blocked by EDTA, indicating that structural features of pre-RNA may affect the ionic requirements of 3' end formation. The ATP analog 3' dATP inhibited both cleavage and polyadenylation even in the presence of ATP, possibly reflecting the coupled nature of these activities. A 5' cap structure appears not to be required for mRNA 3' end processing in vitro because neither the presence or absence of a 5' cap on the pre-RNA nor the addition of cap analogs to reaction mixtures had any effect on the efficiency of 3' end processing. Micrococcal nuclease pretreatment of the nuclear extract inhibited cleavage and polyadenylation. However, restoration of activity was achieved by addition of purified Escherichia coli RNA, suggesting that the inhibition caused by such a nuclease treatment was due to a general requirement for mass of RNA rather than to destruction of a particular nucleic acid-containing component such as a small nuclear ribonucleoprotein.


1989 ◽  
Vol 9 (9) ◽  
pp. 3710-3719
Author(s):  
J Banroques ◽  
J N Abelson

The Saccharomyces cerevisiae prp mutants (prp2 through prp11) are known to be defective in pre-mRNA splicing at nonpermissive temperatures. We have sequenced the PRP4 gene and shown that it encodes a 52-kilodalton protein. We obtained PRP4 protein-specific antibodies and found that they inhibited in vitro pre-mRNA splicing, which confirms the essential role of PRP4 in splicing. Moreover, we found that PRP4 is required early in the spliceosome assembly pathway. Immunoprecipitation experiments with anti-PRP4 antibodies were used to demonstrate that PRP4 is a protein of the U4/U6 small nuclear ribonucleoprotein particle (snRNP). Furthermore, the U5 snRNP could be immunoprecipitated through snRNP-snRNP interactions in the large U4/U5/U6 complex.


1987 ◽  
Vol 7 (1) ◽  
pp. 495-503
Author(s):  
L C Ryner ◽  
J L Manley

Using a pre-RNA containing the simian virus 40 early introns and poly(A) addition site, we investigated several possible requirements for accurate and efficient mRNA 3' end cleavage and polyadenylation in a HeLa cell nuclear extract. Splicing and 3' end formation occurred under the same conditions but did not appear to be coupled in any way in vitro. Like splicing, 3' end cleavage and polyadenylation each required Mg2+, although spermidine could substitute in the cleavage reaction. Additionally, cleavage of this pre-RNA, but not others, was totally blocked by EDTA, indicating that structural features of pre-RNA may affect the ionic requirements of 3' end formation. The ATP analog 3' dATP inhibited both cleavage and polyadenylation even in the presence of ATP, possibly reflecting the coupled nature of these activities. A 5' cap structure appears not to be required for mRNA 3' end processing in vitro because neither the presence or absence of a 5' cap on the pre-RNA nor the addition of cap analogs to reaction mixtures had any effect on the efficiency of 3' end processing. Micrococcal nuclease pretreatment of the nuclear extract inhibited cleavage and polyadenylation. However, restoration of activity was achieved by addition of purified Escherichia coli RNA, suggesting that the inhibition caused by such a nuclease treatment was due to a general requirement for mass of RNA rather than to destruction of a particular nucleic acid-containing component such as a small nuclear ribonucleoprotein.


1991 ◽  
Vol 11 (3) ◽  
pp. 1258-1269
Author(s):  
M Himmelspach ◽  
R Gattoni ◽  
C Gerst ◽  
K Chebli ◽  
J Stévenin

We have studied the consequences of decreasing the donor site-branch site distance on splicing factor-splice site interactions by analyzing alternative splicing of adenovirus E1A pre-mRNAs in vitro. We show that the proximal 13S donor site has a cis-inhibiting effect on the 9S and 12S mRNA reactions when it is brought too close to the common branch site, suggesting that the factor interactions in the common 3' part of the intron are impaired by the U1 small nuclear ribonucleoprotein particle (snRNP) binding to the displaced 13S donor site. Further analysis of the interactions was carried out by studying complex assembly and the accessibility to micrococcal nuclease digestion of 5'-truncated E1A substrates containing only splice sites for the 13S mRNA reaction. A deletion which brings the donor site- branch site distance to 49 nucleotides, which is just below the minimal functional distance, results in a complete block of the U4-U5-U6 snRNP binding, whereas a deletion 15 nucleotides larger results in a severe inhibition of the formation of the U2 snRNP-containing complexes. Sequence accessibility analyses performed by using the last mini-intron-containing transcript demonstrate that the interactions of U2 snRNP with the branch site are strongly impaired whereas the initial bindings of U1 snRNP to the donor site and of specific factors to the 3' splice site are not significantly modified. Our results strongly suggest that the interaction of U1 snRNP with the donor site of a mini-intron is stable enough in vitro to affect the succession of events leading to U2 snRNP binding with the branch site.


2016 ◽  
Vol 28 (2) ◽  
pp. 131
Author(s):  
M. D. Snyder ◽  
J. H. Pryor ◽  
M. D. Peoples ◽  
G. L. Williamson ◽  
M. C. Golding ◽  
...  

Epigenetic patterns established during early bovine embryogenesis via DNA methylation and histone modification patterns are essential for proper gene expression and embryonic development. We have previously discovered that suppression of absent, small, or homeotic-like (ASH2L) with small interfering RNA (siRNA) had no significant effect during in vitro embryo development when compared with its respective control (31.3 ± 2.0% standard error of the mean, n = 466 v. 34.8 ± 1.9%, n = 418). Analysing DNA methylation and histone modifications via immunocytochemistry will further explain the role of ASH2L during embryonic development, specifically at the blastocyst stage. In this experiment, we obtained mature bovine oocytes from a commercial supplier (De Soto Biosciences, Seymour, TN) and preformed IVF following standard laboratory protocol. Eighteen hours after IVF, presumptive zygotes were divided into 3 treatments: noninjected controls, nontargeting siRNA injected controls (siNULL), and injection with siRNA targeting ASH2L (siASH2L). Each embryo was injected with ~100 pL of 20 nM siRNA previously verified to suppress expression of ASH2L by ~79%. Embryos were cultured in Bovine Evolve (Zenith Biotech, Guilford, CT) supplemented with 4 mg mL–1 of BSA (Probumin, Millipore) for 7 days. Blastocysts from each treatment (N = 601) were fixed and prepared for immunocytochemistry following standard laboratory protocol. The following primary antibodies were used to target specific DNA and histone methylation marks: 5mc mAb (Epigentek, Farmingdale, NY), 5hmc pAb, H3K4me3 pAb (Active Motif, Carlsbad, CA), H3K4me2 pAb, H3K9me2–3 mAb, and H3K27me3 mAb (Abcam, Cambridge, MA). Embryos were fluorescently labelled with the following secondary antibodies: Alexa Flour 488 Goat Anti-Rabbit, Alexa 488 Donkey Anti-Goat, and Alexa Flour 594 Goat Anti-Mouse (Invitrogen, Carlsbad, CA). The DNA was stained with Hoechst 33342 (Invitrogen). Fluorescent images were captured using the Zeiss Stallion digital imaging work station. Ratio averages (targeting mark/DNA) were calculated and statistical analysis performed using one-way ANOVA and Tukey’s honestly significant difference to assess treatment effects. The ratio of DNA methylation to total DNA increased in siASH2L as compared with control and siNULL embryos (0.35 ± 0.01, 0.26 ± 0.02, and 0.30 ± 0.01, respectively; P < 0.01). The 5hmC was inversely related to 5mC levels and decreased in siASH2L embryos (0.75 ± 0.01, 0.93 ± 0.02, 0.87 ± 0.02, respectively; P < 0.0001). The H3K4me3 and H3K27me3 are also inversely related with decreased H3K4me3 in siASH2L versus control and siNULL embryos (0.48 ± 0.02, 0.57 ± 0.02, 0.58 ± 0.02, respectively; P < 0.001) and increased H3K27me3 (0.62 ± 0.02, 0.053 ± 0.01, 0.54 ± 0.02, respectively; P < 0.001). No differences were observed in H3K9me2–3 or H3K4me2 labelling across treatments. These results indicate that ASH2L may play a role in DNA methylation by decreasing 5mc and 5hmc conversion, which is a key event during early embryonic development. Suppression of ASH2L also alters global levels of H3H4me3 and H3K27me3, which may lead to transcription aberrations. Further analysis of siASH2L embryos via RNA-seq will help define its role during early embryonic development.


2000 ◽  
Vol 148 (2) ◽  
pp. 293-304 ◽  
Author(s):  
Martin Hetzer ◽  
Iain W. Mattaj

Nuclear import of the two uracil-rich small nuclear ribonucleoprotein (U snRNP) components U1A and U2B′′ is mediated by unusually long and complex nuclear localization signals (NLSs). Here we investigate nuclear import of U1A and U2B′′ in vitro and demonstrate that it occurs by an active, saturable process. Several lines of evidence suggest that import of the two proteins occurs by an import mechanism different to those characterized previously. No cross competition is seen with a variety of previously studied NLSs. In contrast to import mediated by members of the importin-β family of nucleocytoplasmic transport receptors, U1A/U2B′′ import is not inhibited by either nonhydrolyzable guanosine triphosphate (GTP) analogues or by a mutant of the GTPase Ran that is incapable of GTP hydrolysis. Adenosine triphosphate is capable of supporting U1A and U2B′′ import, whereas neither nonhydrolyzable adenosine triphosphate analogues nor GTP can do so. U1A and U2B′′ import in vitro does not require the addition of soluble cytosolic proteins, but a factor or factors required for U1A and U2B′′ import remains tightly associated with the nuclear fraction of conventionally permeabilized cells. This activity can be solubilized in the presence of elevated MgCl2. These data suggest that U1A and U2B′′ import into the nucleus occurs by a hitherto uncharacterized mechanism.


Zygote ◽  
2013 ◽  
Vol 23 (1) ◽  
pp. 53-57 ◽  
Author(s):  
L. Mara ◽  
D. Sanna ◽  
M. Dattena ◽  
I.M. Mayorga Muñoz

SummaryIt has been reported that different in vitro culture systems affect the birth weight of lambs. The aim of this study was to test body weight and lambing rate of lambs born from five different in vitro culture systems after vitrification. Oocytes of Sarda sheep were matured in TCM-199 plus 0.4% bovine serum albumin (BSA) using systems: (i) 4 mg/ml fatty acid-free BSA (BSA4); (ii) 8 mg/ml fatty acid-free BSA (BSA8); (iii) BSA8–hyaluronan (BSA8–HA); (iv) BSA8–charcoal-stripped FBS (BSA8–CH); or (v) with 10% fetal bovine serum (FBS; serum) and fertilized with fresh semen. The presumptive zygotes were cultured up to the blastocyst stage with BSA8, BSA8-HA, BSA8-CH or serum or BSA4. In the third and fifth days of culture 5% charcoal-stripped FBS was added into BSA8-CH and serum, while 8 mg/ml or 4 mg/ml fatty acid-free BSA was added as BSA8, BSA8-HA and BSA4 respectively; 6 mg/ml HA was added to BSA8-HA. In total, 240 vitrified blastocysts were transferred into synchronized ewes. The lambing rate was not significant different between BSA groups or between serum groups (BSA8-CH and serum), while serum groups showed significant lower values when compared with BSA groups. Only BSA8 groups produced heavy lambs (≥4.5 kg) with a significant difference between BSA4 and BSA8 groups (P < 0.05).


Sign in / Sign up

Export Citation Format

Share Document