scholarly journals Rayleigh anomaly-enabled mode hybridization in gold nanohole arrays by scalable colloidal lithography for highly-sensitive biosensing

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhiliang Zhang ◽  
Feng Zhao ◽  
Renxian Gao ◽  
Chih-Yu Jao ◽  
Churong Ma ◽  
...  

Abstract Plasmonic sensors exhibit tremendous potential to accomplish real-time, label-free, and high-sensitivity biosensing. Gold nanohole array (GNA) is one of the classic plasmonic nanostructures that can be readily fabricated and integrated into microfluidic platforms for a variety of applications. Even though GNA has been widely studied, new phenomena and applications are still emerging continuously expanding its capabilities. In this article, we demonstrated narrow-band high-order resonances enabled by Rayleigh anomaly in the nanohole arrays that are fabricated by scalable colloidal lithography. We fabricated large-area GNAs with different hole diameters, and investigated their transmission characteristics both numerically and experimentally. We showed that mode hybridization between the plasmon mode of the nanoholes and Rayleigh anomaly of the array could give rise to high-quality decapole resonance with a unique nearfield profile. We experimentally achieved a refractive index sensitivity, i.e., RIS up to 407 nm/RIU. More importantly, we introduced a spectrometer-free refractive index sensing based on lens-free smartphone imaging of GNAs with (intensity) sensitivity up to 137%/RIU. Using this platform, we realized the label-free detection of BSA molecules with concentration as low as 10−8 M. We believe our work could pave the way for highly sensitive and compact point-of-care devices with cost-effective and high-throughput plasmonic chips.

Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 120 ◽  
Author(s):  
Vladimir Bochenkov ◽  
Tatyana Shabatina

Biosensing requires fast, selective, and highly sensitive real-time detection of biomolecules using efficient simple-to-use techniques. Due to a unique capability to focus light at nanoscale, plasmonic nanostructures provide an excellent platform for label-free detection of molecular adsorption by sensing tiny changes in the local refractive index or by enhancing the light-induced processes in adjacent biomolecules. This review discusses the opportunities provided by surface plasmon resonance in probing the chirality of biomolecules as well as their conformations and orientations. Various types of chiral plasmonic nanostructures and the most recent developments in the field of chiral plasmonics related to biosensing are considered.


2014 ◽  
Vol 50 (24) ◽  
pp. 3211-3213 ◽  
Author(s):  
Mengli Yang ◽  
Ying Chen ◽  
Yun Xiang ◽  
Ruo Yuan ◽  
Yaqin Chai

Highly sensitive and label-free detection of thrombin is achieved via a target-induced DNA structure switching strategy and Exo III-assisted recycling amplification.


Author(s):  
Shuangxiu Yuan ◽  
Xuebo Sun ◽  
Jing Li ◽  
Yan Li ◽  
Fufang Su ◽  
...  

Abstract We experimentally and theoretically investigate Fano-like resonance in large-area Au/SiO2/Au nano-patches meta-structure, which is originating from the coupling between Fabry Perot resonance and magnetic dipole resonance modes. A highly sensitive refractive index sensor based on the lineshape analysis is obtained. The extracted wavelength shift with the amount of substance of Hg2+ changing from 10-3 pmol to 1 nmol has a linear dependence, and the sensitivity can reach to ultra-low limit of detection (LOD) as 10-3 pmol. This study may provide an approach for the development and modification in sensing.


2010 ◽  
Author(s):  
M. I. Zibaii ◽  
H. Latifi ◽  
E. Ghanati ◽  
M. Gholami ◽  
S. M. Hosseini

Lab on a Chip ◽  
2017 ◽  
Vol 17 (10) ◽  
pp. 1740-1748 ◽  
Author(s):  
Sentayehu F. Wondimu ◽  
Sebastian von der Ecken ◽  
Ralf Ahrens ◽  
Wolfgang Freude ◽  
Andreas E. Guber ◽  
...  

WGM biosensor arrays are integrated with a DMF system. The viability of the system is demonstrated by refractive-index and biosensing experiments.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2182 ◽  
Author(s):  
Chiara Valsecchi ◽  
Luis Enrique Gomez Armas ◽  
Jacson Weber de Menezes

Several fabrication techniques are recently used to produce a nanopattern for sensing, as focused ion beam milling (FIB), e-beam lithography (EBL), nanoimprinting, and soft lithography. Here, interference lithography is explored for the fabrication of large area nanohole arrays in metal films as an efficient, flexible, and scalable production method. The transmission spectra in air of the 1 cm2 substrate were evaluated to study the substrate behavior when hole-size, periodicity, and film thickness are varied, in order to elucidate the best sample for the most effective sensing performance. The efficiency of the nanohole array was tested for bulk sensing and compared with other platforms found in the literature. The sensitivity of ~1000 nm/RIU, achieved with an array periodicity in the visible range, exceeds near infrared (NIR) performances previously reported, and demonstrates that interference lithography is one of the best alternative to other expensive and time-consuming nanofabrication methods.


Sign in / Sign up

Export Citation Format

Share Document