scholarly journals Electro-optically modulated lossy-mode resonance

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mateusz Śmietana ◽  
Bartosz Janaszek ◽  
Katarzyna Lechowicz ◽  
Petr Sezemsky ◽  
Marcin Koba ◽  
...  

Abstract Sensitivity, selectivity, reliability, and measurement range of a sensor are vital parameters for its wide applications. Fast growing number of various detection systems seems to justify worldwide efforts to enhance one or some of the parameters. Therefore, as one of the possible solutions, multi-domain sensing schemes have been proposed. This means that the sensor is interrogated simultaneously in, e.g., optical and electrochemical domains. An opportunity to combine the domains within a single sensor is given by optically transparent and electrochemically active transparent conductive oxides (TCOs), such as indium tin oxide (ITO). This work aims to bring understanding of electro-optically modulated lossy-mode resonance (LMR) effect observed for ITO-coated optical fiber sensors. Experimental research supported by numerical modeling allowed for identification of the film properties responsible for performance in both domains, as well as interactions between them. It has been found that charge carrier density in the semiconducting ITO determines the efficiency of the electrochemical processes and the LMR properties. The carrier density boosts electrochemical activity but reduces capability of electro-optical modulation of the LMR. It has also been shown that the carrier density can be tuned by pressure during magnetron sputtering of ITO target. Thus, the pressure can be chosen as a parameter for optimization of electro-optical modulation of the LMR, as well as optical and electrochemical responses of the device, especially when it comes to label-free sensing and biosensing.

2003 ◽  
Vol 773 ◽  
Author(s):  
Myung-Il Park ◽  
Jonging Hong ◽  
Dae Sung Yoon ◽  
Chong-Ook Park ◽  
Geunbae Im

AbstractThe large optical detection systems that are typically utilized at present may not be able to reach their full potential as portable analysis tools. Accurate, early, and fast diagnosis for many diseases requires the direct detection of biomolecules such as DNA, proteins, and cells. In this research, a glass microchip with integrated microelectrodes has been fabricated, and the performance of electrochemical impedance detection was investigated for the biomolecules. We have used label-free λ-DNA as a sample biomolecule. By changing the distance between microelectrodes, the significant difference between DW and the TE buffer solution is obtained from the impedance-frequency measurements. In addition, the comparison for the impedance magnitude of DW, the TE buffer, and λ-DNA at the same distance was analyzed.


Author(s):  
Guillaume Celi ◽  
Sylvain Dudit ◽  
Thierry Parrassin ◽  
Philippe Perdu ◽  
Antoine Reverdy ◽  
...  

Abstract For Very Deep submicron Technologies, techniques based on the analysis of reflected laser beam properties are widely used. The Laser Voltage Imaging (LVI) technique, introduced in 2009, allows mapping frequencies through the backside of integrated circuit. In this paper, we propose a new technique based on the LVI technique to debug a scan chain related issue. We describe the method to use LVI, usually dedicated to frequency mapping of digital active parts, in a way that enables localization of resistive leakage. Origin of this signal is investigated on a 40nm case study. This signal can be properly understood when two different effects, charge carrier density variations (LVI) and thermo reflectance effect (Thermal Frequency Imaging, TFI), are taken into account.


ACS Omega ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 16328-16337 ◽  
Author(s):  
Stanley Bram ◽  
Matthew N. Gordon ◽  
Michael A. Carbonell ◽  
Maren Pink ◽  
Barry D. Stein ◽  
...  

2020 ◽  
Vol 693 ◽  
pp. 137689
Author(s):  
S. Abhirami ◽  
Shilpam Sharma ◽  
E.P. Amaladass ◽  
R. Rajitha ◽  
P. Magudapathy ◽  
...  

Langmuir ◽  
1999 ◽  
Vol 15 (19) ◽  
pp. 6598-6600 ◽  
Author(s):  
Susan K. VanderKam ◽  
Ellen S. Gawalt ◽  
Jeffrey Schwartz ◽  
Andrew B. Bocarsly

Biosensors ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 111 ◽  
Author(s):  
Nowicka ◽  
Czaplicka ◽  
Kowalska ◽  
Szymborski ◽  
Kamińska

We show a new type of elastic surface-enhanced Raman spectroscopy (SERS) platform made of poly(ethylene terephthalate) (PET) covered with a layer of indium tin oxide (ITO). This composite is subjected to dielectric barrier discharge (DBD) that develops the active surface of the PET/ITO foil. To enhance the Raman signal, a modified composite was covered with a thin layer of silver using the physical vapor deposition (PVD) technique. The SERS platform was used for measurements of para-mercaptobenzoic acid (p-MBA) and popular pesticides, i.e., Thiram and Carbaryl. The detection and identification of pesticides on the surface of fruits and vegetables is a crucial issue due to extensive use of those chemical substances for plant fungicide and insecticide protection. Therefore, the developed PET/ITO/Ag SERS platform was dedicated to quantitative analysis of selected pesticides, i.e., Thiram and Carbaryl from fruits. The presented SERS platform exhibits excellent enhancement and reproducibility of the Raman signal, which enables the trace analysis of these pesticides in the range up to their maximum residues limit. Based on the constructed calibration curves, the pesticide concentrations from the skin of apples was estimated as 2.5 µg/mL and 0.012 µg/mL for Thiram and Carbaryl, respectively. Additionally, the PET/ITO/Ag SERS platform satisfies other spectroscopic properties required for trace pesticide analysis e.g., ease, cost-effective method of preparation, and specially designed physical properties, especially flexibility and transparency, that broaden the sampling versatility to irregular surfaces.


Nanoscale ◽  
2020 ◽  
Vol 12 (48) ◽  
pp. 24357-24361
Author(s):  
Bingbing Han ◽  
Sila Jin ◽  
Qi Chu ◽  
Yang Jin ◽  
Xiangxin Xue ◽  
...  

The localized surface plasmon resonance (LSPR) of Ag/indium tin oxide (ITO)@polystyrene (PS) in the visible-NIR region was dependent on the tuning of the carrier density caused by adjusting the thickness of the ITO layer.


Sign in / Sign up

Export Citation Format

Share Document