scholarly journals Phosphonate reagents and building blocks in the synthesis of bioactive compounds, natural products and medicines

2019 ◽  
Vol 91 (5) ◽  
pp. 811-838 ◽  
Author(s):  
Marian Mikołajczyk

Abstract This account outlines the results obtained in the author’s laboratory on the application of phosphonates in the synthesis of various classes of biologically active cyclopentenones and cyclopentanones. In the first place two general methods for the synthesis of mono-, 1,2- and 1,4-dicarbonyl compounds are presented. The first is based on the use of α-phosphoryl sulfides in conjunction with the Horner reaction while in the second method the oxygenation reaction of α-phosphonate carbanion is a key step. The utility of these two approaches to 1,4-diketones as precursors of cyclopentenones was exemplified by the synthesis of dihydrojasmone and (Z)-jasmone. The use of simple phosphonates, α-phosphoryl sulfides and β- and γ-ketophosphonates as starting reagents in the synthesis of cyclopentanoid antibiotics (methylenomycin B, racemic desepoxy-4,5-didehydromethylenomycin, enantiomeric sarkomycins) is presented. The synthesis and reactivity of achiral 3-(phosphorylmethyl)cyclopent-2-enone and chiral diastereoisomeric camphor protected 3-(phosphorylmethyl)-4,5-dihydroxycyclopent-2-enones as building blocks is discussed as a platform for developing a new access to a variety of bioactive cyclopentenones. The utility and value of achiral phosphonate building block is demonstrated by the synthesis of racemic and enantiopure prostaglandin B1 methyl esters and enantiomeric phytoprostanes B1 type I and II. The range of biologically active compounds prepared from chiral diastereoisomeric cyclopentenone phosphonates is wider. Herein the total syntheses of the following target compounds are presented: enantiomeric isoterreins, natural (−)-neplanocin A and its unnatural (+)-enantiomer, anticancer prostaglandin analogues (enantiomers of TEI-9826, NEPP-11, iso-NEPP-11). The design and synthesis of racemic and four enantiopure stereoisomers of an antiulcer drug rosaprostol is also described.

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5917
Author(s):  
Yang Pan ◽  
Shogo Morisako ◽  
Shinobu Aoyagi ◽  
Takahiro Sasamori

Divalent silicon species, the so-called silylenes, represent attractive organosilicon building blocks. Isolable stable silylenes remain scarce, and in most hitherto reported examples, the silicon center is stabilized by electron-donating substituents (e.g., heteroatoms such as nitrogen), which results in electronic perturbation. In order to avoid such electronic perturbation, we have been interested in the chemistry of reactive silylenes with carbon-based substituents such as ferrocenyl groups. Due to the presence of a divalent silicon center and the redox-active transition metal iron, ferrocenylsilylenes can be expected to exhibit interesting redox behavior. Herein, we report the design and synthesis of a bis(ferrocenyl)silirane as a precursor for a bis(ferrocenyl)silylene, which could potentially be used as a building block for redox-active organosilicon compounds. It was found that the isolated bis(ferrocenyl)siliranes could be a bottleable precursor for the bis(ferrocenyl)silylene under mild conditions.


2007 ◽  
Vol 16 (04) ◽  
pp. 517-525 ◽  
Author(s):  
PHILLIP N. CHEONG ◽  
R. P. MARTINS

This paper proposes an interactive architecture compiler for SC multirate circuits that allows the automated design from the frequency specifications to the building block implementation, applied to the design and synthesis of multistage SC decimators. The compiler provides a library of different topologies that comprises a few independent multi-decimation building blocks. New building blocks defined by the users are also available for the design of a specific stage. A design example of a 7th order SC decimator illustrates the efficient synthesis of the corresponding resulting circuits that achieve the required anti-aliasing amplitude responses with respect to the speed requirements of the operational amplifiers and also the minimum capacitance spread and total capacitor area.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1772
Author(s):  
Ignacio E. Tobal ◽  
Rocío Bautista ◽  
David Diez ◽  
Narciso M. Garrido ◽  
Pilar García-García

In synthetic organic chemistry, there are very useful basic compounds known as building blocks. One of the main reactions wherein they are applied for the synthesis of complex molecules is the Diels–Alder cycloaddition. This reaction is between a diene and a dienophile. Among the most important dienes are the cyclic dienes, as they facilitate the reaction. This review considers the synthesis and reactivity of one of these dienes with special characteristics—it is cyclic and has an electron withdrawing group. This building block has been used for the synthesis of biologically active compounds and is present in natural compounds with interesting properties.


Author(s):  
Dorian Bader ◽  
Johannes Fröhlich ◽  
Paul Kautny

The facile preparation of three regioisomeric thienopyrrolocarbazoles applying a convenient C-H activation approach is presented. Derived from indolo[3,2,1-<i>jk</i>]carbazole, the incorporation of thiophene into the triarylamine framework significantly impacted the molecular properties of the parent scaffold. The developed thienopyrrolocarbazoles enrich the family of triarylamine donors and constitute a novel building block for functional organic materials.


2019 ◽  
Author(s):  
Dorian Bader ◽  
Johannes Fröhlich ◽  
Paul Kautny

The facile preparation of three regioisomeric thienopyrrolocarbazoles applying a convenient C-H activation approach is presented. Derived from indolo[3,2,1-<i>jk</i>]carbazole, the incorporation of thiophene into the triarylamine framework significantly impacted the molecular properties of the parent scaffold. The developed thienopyrrolocarbazoles enrich the family of triarylamine donors and constitute a novel building block for functional organic materials.


2021 ◽  
Vol 22 (13) ◽  
pp. 6787
Author(s):  
Constantin I. Tănase ◽  
Constantin Drăghici ◽  
Miron Teodor Căproiu ◽  
Anamaria Hanganu ◽  
Gheorghe Borodi ◽  
...  

β-Ketophosphonates with pentalenofurane fragments linked to the keto group were synthesized. The bulky pentalenofurane skeleton is expected to introduce more hindrance in the prostaglandin analogues of type III, greater than that obtained with the bicyclo[3.3.0]oct(a)ene fragments of prostaglandin analogues I and II, to slow down (retard) the inactivation of the prostaglandin analogues by oxidation of 15α-OH to the 15-keto group via the 15-PGDH pathway. Their synthesis was performed by a sequence of three high yield reactions, starting from the pentalenofurane alcohols 2, oxidation of alcohols to acids 3, esterification of acids 3 to methyl esters 4 and reaction of the esters 4 with lithium salt of dimethyl methanephosphonate at low temperature. The secondary compounds 6b and 6c were formed in small amounts in the oxidation reactions of 2b and 2c, and the NMR spectroscopy showed that their structure is that of an ester of the acid with the starting alcohol. Their molecular structures were confirmed by single crystal X-ray determination method for 6c and XRPD powder method for 6b.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 118
Author(s):  
Jean-Laurent Pouchairet ◽  
Carole Rossi

For the past two decades, many research groups have investigated new methods for reducing the size and cost of safe and arm-fire systems, while also improving their safety and reliability, through batch processing. Simultaneously, micro- and nanotechnology advancements regarding nanothermite materials have enabled the production of a key technological building block: pyrotechnical microsystems (pyroMEMS). This building block simply consists of microscale electric initiators with a thin thermite layer as the ignition charge. This microscale to millimeter-scale addressable pyroMEMS enables the integration of intelligence into centimeter-scale pyrotechnical systems. To illustrate this technological evolution, we hereby present the development of a smart infrared (IR) electronically controllable flare consisting of three distinct components: (1) a controllable pyrotechnical ejection block comprising three independently addressable small-scale propellers, all integrated into a one-piece molded and interconnected device, (2) a terminal function block comprising a structured IR pyrotechnical loaf coupled with a microinitiation stage integrating low-energy addressable pyroMEMS, and (3) a connected, autonomous, STANAG 4187 compliant, electronic sensor arming and firing block.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 503
Author(s):  
Morten Gundersen ◽  
Guro Austli ◽  
Sigrid Løvland ◽  
Mari Hansen ◽  
Mari Rødseth ◽  
...  

Sustainable methods for producing enantiopure drugs have been developed. Chlorohydrins as building blocks for several β-blockers have been synthesized in high enantiomeric purity by chemo-enzymatic methods. The yield of the chlorohydrins increased by the use of catalytic amount of base. The reason for this was found to be the reduced formation of the dimeric by-products compared to the use of higher concentration of the base. An overall reduction of reagents and reaction time was also obtained compared to our previously reported data of similar compounds. The enantiomers of the chlorohydrin building blocks were obtained by kinetic resolution of the racemate in transesterification reactions catalyzed by Candida antarctica Lipase B (CALB). Optical rotations confirmed the absolute configuration of the enantiopure drugs. The β-blocker (S)-practolol ((S)-N-(4-(2-hydroxy-3-(isopropylamino)propoxy)phenyl)acetamide) was synthesized with 96% enantiomeric excess (ee) from the chlorohydrin (R)-N-(4-(3-chloro-2 hydroxypropoxy)phenyl)acetamide, which was produced in 97% ee and with 27% yield. Racemic building block 1-((1H-indol-4-yl)oxy)-3-chloropropan-2-ol for the β-blocker pindolol was produced in 53% yield and (R)-1-((1H-indol-4-yl)oxy)-3-chloropropan-2-ol was produced in 92% ee. The chlorohydrin 7-(3-chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one, a building block for a derivative of carteolol was produced in 77% yield. (R)-7-(3-Chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one was obtained in 96% ee. The S-enantiomer of this carteolol derivative was produced in 97% ee in 87% yield. Racemic building block 5-(3-chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one, building block for the drug carteolol, was also produced in 53% yield, with 96% ee of the R-chlorohydrin (R)-5-(3-chloro-2-hydroxypropoxy)-3,4-dihydroquinolin-2(1H)-one. (S)-Carteolol was produced in 96% ee with low yield, which easily can be improved.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ling Xin ◽  
Xiaoyang Duan ◽  
Na Liu

AbstractIn living organisms, proteins are organized prevalently through a self-association mechanism to form dimers and oligomers, which often confer new functions at the intermolecular interfaces. Despite the progress on DNA-assembled artificial systems, endeavors have been largely paid to achieve monomeric nanostructures that mimic motor proteins for a single type of motion. Here, we demonstrate a DNA-assembled building block with rotary and walking modules, which can introduce new motion through dimerization and oligomerization. The building block is a chiral system, comprising two interacting gold nanorods to perform rotation and walking, respectively. Through dimerization, two building blocks can form a dimer to yield coordinated sliding. Further oligomerization leads to higher-order structures, containing alternating rotation and sliding dimer interfaces to impose structural twisting. Our hierarchical assembly scheme offers a design blueprint to construct DNA-assembled advanced architectures with high degrees of freedom to tailor the optical responses and regulate multi-motion on the nanoscale.


2021 ◽  
Author(s):  
Xinyao Liu ◽  
Yunling Liu

ZMOFs are a subset of MOFs that exhibit zeolite-like topologies. Using molecular building block strategy, many ZMOFs with high stability and excellent performance can be rationally designed and synthesized using different secondary building units.


Sign in / Sign up

Export Citation Format

Share Document