scholarly journals Genericity of chaos for colored graphs

2021 ◽  
Vol 9 (1) ◽  
pp. 37-52
Author(s):  
Ramón Barral Lijó ◽  
Hiraku Nozawa

Abstract To each colored graph one can associate its closure in the universal space of isomorphism classes of pointed colored graphs, and this subspace can be regarded as a generalized subshift. Based on this correspondence, we introduce two definitions for chaotic (colored) graphs, one of them analogous to Devaney’s. We show the equivalence of our two novel definitions of chaos, proving their topological genericity in various subsets of the universal space.

2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Laurent Gourvès ◽  
Adria Lyra ◽  
Carlos A. Martinhon ◽  
Jérôme Monnot

Graph Theory International audience In this paper we deal from an algorithmic perspective with different questions regarding properly edge-colored (or PEC) paths, trails and closed trails. Given a c-edge-colored graph G(c), we show how to polynomially determine, if any, a PEC closed trail subgraph whose number of visits at each vertex is specified before hand. As a consequence, we solve a number of interesting related problems. For instance, given subset S of vertices in G(c), we show how to maximize in polynomial time the number of S-restricted vertex (resp., edge) disjoint PEC paths (resp., trails) in G(c) with endpoints in S. Further, if G(c) contains no PEC closed trails, we show that the problem of finding a PEC s-t trail visiting a given subset of vertices can be solved in polynomial time and prove that it becomes NP-complete if we are restricted to graphs with no PEC cycles. We also deal with graphs G(c) containing no (almost) PEC cycles or closed trails through s or t. We prove that finding 2 PEC s-t paths (resp., trails) with length at most L > 0 is NP-complete in the strong sense even for graphs with maximum degree equal to 3 and present an approximation algorithm for computing k vertex (resp., edge) disjoint PEC s-t paths (resp., trails) so that the maximum path (resp., trail) length is no more than k times the PEC path (resp., trail) length in an optimal solution. Further, we prove that finding 2 vertex disjoint s-t paths with exactly one PEC s-t path is NP-complete. This result is interesting since as proved in Abouelaoualim et. al.(2008), the determination of two or more vertex disjoint PEC s-t paths can be done in polynomial time. Finally, if G(c) is an arbitrary c-edge-colored graph with maximum vertex degree equal to four, we prove that finding two monochromatic vertex disjoint s-t paths with different colors is NP-complete. We also propose some related problems.


2020 ◽  
Vol 40 (4) ◽  
pp. 1008-1019
Author(s):  
Zhiwei Guo ◽  
Hajo Broersma ◽  
Ruonan Li ◽  
Shenggui Zhang

Abstract A compatible spanning circuit in a (not necessarily properly) edge-colored graph G is a closed trail containing all vertices of G in which any two consecutively traversed edges have distinct colors. Sufficient conditions for the existence of extremal compatible spanning circuits (i.e., compatible Hamilton cycles and Euler tours), and polynomial-time algorithms for finding compatible Euler tours have been considered in previous literature. More recently, sufficient conditions for the existence of more general compatible spanning circuits in specific edge-colored graphs have been established. In this paper, we consider the existence of (more general) compatible spanning circuits from an algorithmic perspective. We first show that determining whether an edge-colored connected graph contains a compatible spanning circuit is an NP-complete problem. Next, we describe two polynomial-time algorithms for finding compatible spanning circuits in edge-colored complete graphs. These results in some sense give partial support to a conjecture on the existence of compatible Hamilton cycles in edge-colored complete graphs due to Bollobás and Erdős from the 1970s.


1996 ◽  
Vol 07 (01) ◽  
pp. 11-21 ◽  
Author(s):  
RICHA AGARWALA ◽  
DAVID FERNÁNDEZ-BACA

This paper presents an O((r–n/m)mrnm) algorithm for determining whether a set of n species has a perfect phylogeny, where m is the number of characters used to describe a species and r is the maximum number of states that a character can be in. The perfect phylogeny algorithm leads to an O((2e/k)ke2k) algorithm for triangulating a k-colored graph having e edges.


Author(s):  
Muhammad Imran ◽  
Yasir Ali ◽  
Mehar Ali Malik ◽  
Kiran Hasnat

Chromatic spectrum of a colored graph G is a multiset of eigenvalues of colored adjacency matrix of G. The nullity of a disconnected graph is equal to sum of nullities of its components but we show that this result does not hold for colored graphs. In this paper, we investigate the chromatic spectrum of three different classes of 2-regular bipartite colored graphs. In these classes of graphs, it is proved that the nullity of G is not sum of nullities of components of G. We also highlight some important properties and conjectures to extend this problem to general graphs.


10.37236/995 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
He Chen ◽  
Xueliang Li

Let $G$ be an edge-colored graph. A heterochromatic (rainbow, or multicolored) path of $G$ is such a path in which no two edges have the same color. Let $CN(v)$ denote the color neighborhood of a vertex $v$ of $G$. In a previous paper, we showed that if $|CN(u)\cup CN(v)|\geq s$ (color neighborhood union condition) for every pair of vertices $u$ and $v$ of $G$, then $G$ has a heterochromatic path of length at least $\lfloor{2s+4\over5}\rfloor$. In the present paper, we prove that $G$ has a heterochromatic path of length at least $\lceil{s+1\over2}\rceil$, and give examples to show that the lower bound is best possible in some sense.


10.37236/3770 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Anita Das ◽  
S. V. Subrahmanya ◽  
P. Suresh

Let $G$ be an edge colored graph. A rainbow pathin $G$ is a path in which all the edges are colored with distinct colors. Let $d^c(v)$ be the color degree of a vertex $v$ in $G$, i.e. the number of distinct colors present on the edges incident on the vertex $v$. Let $t$ be the maximum length of a rainbow path in $G$. Chen and Li (2005) showed that if $d^c \geq k \,\, (k\geq 8)$, for every vertex $v$ of $G$, then $t \geq \left \lceil \frac{3 k}{5}\right \rceil + 1$. Unfortunately, the proof by Chen and Li is very long and comes to about 23 pages in the journal version. Chen and Li states in their paper that it was conjectured by Akira Saito, that $t \ge \left \lceil \frac {2k} {3} \right \rceil$. They also state in their paper that they believe $t \ge k - c$ for some constant $c$. In this note, we give a short proof to show that $t \ge \left \lceil \frac{3 k}{5}\right \rceil$, using an entirely different method. Our proof is only about 2 pages long. The draw-back is that our bound is less by 1, than the bound given by Chen and Li. We hope that the new approach adopted in this paper would eventually lead to the settlement of the conjectures by Saito and/or Chen and Li.


2016 ◽  
Vol Vol. 17 no. 3 (Discrete Algorithms) ◽  
Author(s):  
Xiaoyan Zhang ◽  
Zan-Bo Zhang ◽  
Hajo Broersma ◽  
Xuelian Wen

International audience Network models allow one to deal with massive data sets using some standard concepts from graph theory. Understanding and investigating the structural properties of a certain data set is a crucial task in many practical applications of network optimization. Recently, labeled network optimization over colored graphs has been extensively studied. Given a (not necessarily properly) edge-colored graph $G=(V,E)$, a subgraph $H$ is said to be <i>monochromatic</i> if all its edges have the same color, and called <i>multicolored</i> if all its edges have distinct colors. The monochromatic clique and multicolored cycle partition problems have important applications in the problems of network optimization arising in information science and operations research. We investigate the computational complexity of the problems of determining the minimum number of monochromatic cliques or multicolored cycles that, respectively, partition $V(G)$. We show that the minimum monochromatic clique partition problem is APX-hard on monochromatic-diamond-free graphs, and APX-complete on monochromatic-diamond-free graphs in which the size of a maximum monochromatic clique is bounded by a constant. We also show that the minimum multicolored cycle partition problem is NP-complete, even if the input graph $G$ is triangle-free. Moreover, for the weighted version of the minimum monochromatic clique partition problem on monochromatic-diamond-free graphs, we derive an approximation algorithm with (tight) approximation guarantee ln $|V(G)|+1$.


10.37236/475 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Timothy D. LeSaulnier ◽  
Christopher Stocker ◽  
Paul S. Wenger ◽  
Douglas B. West

A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors. The color degree of a vertex $v$ is the number of different colors on edges incident to $v$. Wang and Li conjectured that for $k\geq 4$, every edge-colored graph with minimum color degree at least $k$ contains a rainbow matching of size at least $\left\lceil k/2 \right\rceil$. We prove the slightly weaker statement that a rainbow matching of size at least $\left\lfloor k/2 \right\rfloor$ is guaranteed. We also give sufficient conditions for a rainbow matching of size at least $\left\lceil k/2 \right\rceil$ that fail to hold only for finitely many exceptions (for each odd $k$).


10.37236/433 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Rachel M. Esselstein ◽  
Peter Winkler

We will explore the computational complexity of satisfying certain sets of neighborhood conditions in graphs with various properties. More precisely, fix a radius $\rho$ and let $N(G)$ be the set of isomorphism classes of $\rho$-neighborhoods of vertices of $G$ where $G$ is a graph whose vertices are colored (not necessarily properly) by colors from a fixed finite palette. The root of the neighborhood will be the unique vertex at the "center" of the graph. Given a set $\mathcal{S}$ of colored graphs with a unique root, when is there a graph $G$ with $N(G)=\mathcal{S}$? Or $N(G) \subset \mathcal{S}$? What if $G$ is forced to be infinite, or connected, or both? If the neighborhoods are unrestricted, all these problems are recursively unsolvable; this follows from the work of Bulitko [Graphs with prescribed environments of the vertices. Trudy Mat. Inst. Steklov., 133:78–94, 274, 1973]. In contrast, when the neighborhoods are cycle free, all the problems are in the class $\mathtt{P}$. Surprisingly, if $G$ is required to be a regular (and thus infinite) tree, we show the realization problem is NP-complete (for degree 3 and higher); whereas, if $G$ is allowed to be any finite graph, the realization problem is in P.


2017 ◽  
Vol 17 (4) ◽  
Author(s):  
Tracy L. Payne ◽  
Matthew Schroeder

AbstractUniform Lie algebras are combinatorially defined two-step nilpotent Lie algebras which can be used to define Einstein solvmanifolds. These Einstein spaces often have nontrivial isotropy groups. We derive basic properties of uniform Lie algebras and we classify uniform Lie algebras with five or fewer generators. We define a type of directed colored graph called a uniformly colored graph and establish a correspondence between uniform Lie algebras and uniformly colored graphs. We present several methods of constructing infinite families of uniformly colored graphs and corresponding uniform Lie algebras.


Sign in / Sign up

Export Citation Format

Share Document